Giải SBT Toán 10 trang 18 Tập 1 Kết nối tri thức

Với Giải SBT Toán 10 trang 18 Tập 1 trong Bài 3: Bất phương trình bậc nhất hai ẩn Toán lớp 10 Tập 1 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Toán 10 trang 18.

1 492 09/12/2022


Giải SBT Toán 10 trang 18 Tập 1 Kết nối tri thức

Bài 2.1 trang 18 SBT Toán 10 Tập 1: Cho bất phương trình bậc nhất hai ẩn -3x + y < 4.

a) Biểu diễn miền nghiệm của bất phương trình đã cho trên mặt phẳng tọa độ.

b) Từ đó suy ra miền nghiệm của bất phương trình -3x + y ≤ 4 và miền nghiệm của bất phương trình -3x + y ≥ 4.

Lời giải:

a) Biểu diễn miền nghiệm của bất phương trình -3x + y < 4 trên mặt phẳng tọa độ.

Bước 1. Vẽ đường thẳng d: -3x + y = 4 trên mặt phẳng tọa độ Oxy như sau:

• Xác định hai điểm thuộc đường thẳng d: -3x + y = 4.

Ta có bảng sau:

x

0

1

y

4

7

Do đó đồ thị của đường thẳng d: -3x + y = 4 đi qua các điểm có tọa độ (0; 4) và (1; 7).

• Xác định 2 điểm đó trên hệ trục tọa độ Oxy và kẻ đường thẳng đi qua 2 điểm đó, ta thu được đường thẳng d: -3x + y = 4.

Bước 2. Ta chọn O(0; 0) là điểm không thuộc đường thẳng d: -3x + y = 4 và thay vào biểu thức -3x + y, ta có -3 . 0 + 0 = 0 < 4.

Do đó miền nghiệm của bất phương trình -3x + y < 4 là nửa mặt phẳng bờ d chứa gốc tọa độ và bỏ đi đường thẳng d (miền không được gạch).

Sách bài tập Toán 10 Bài 3: Bất phương trình bậc nhất hai ẩn - Kết nối tri thức (ảnh 1)

b) Khi đó miền nghiệm của bất phương trình -3x + y ≤ 4 là nửa mặt phẳng bờ d chứa gốc tọa độ (miền không được gạch).

Miền nghiệm của bất phương trình -3x + y ≥ 4 là nửa mặt phẳng bờ d không chứa gốc tọa độ (miền được gạch).

Sách bài tập Toán 10 Bài 3: Bất phương trình bậc nhất hai ẩn - Kết nối tri thức (ảnh 1)

Bài 2.2 trang 18 SBT Toán 10 Tập 1: Cho bất phương trình 2x + 3y + 3 ≤ 5x + 2y + 3.

Bằng cách chuyển vế, hãy đưa bất phương trình trên về dạng tổng quát của bất phương trình bậc nhất hai ẩn. Biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn đó trên mặt phẳng tọa độ.

Lời giải:

Ta có 2x + 3y + 3 ≤ 5x + 2y + 3

Û 2x + 3y + 3 - 5x - 2y - 3 ≤ 0.

Û -3x + y ≤ 0.

Biểu diễn miền nghiệm của bất phương trình -3x + y ≤ 0 trên mặt phẳng tọa độ:

Bước 1. Vẽ đường thẳng d: -3x + y = 0 theo các bước sau:

• Xác định hai điểm thuộc đường thẳng d: -3x + y = 0.

x

0

1

y

0

3

Do đó đường thẳng d: -3x + y = 0 đi qua hai điểm có tọa độ (0; 0) và (1; 3).

• Xác định hai điểm đó trên hệ trục tọa độ Oxy, kẻ đường thẳng đi qua 2 điểm đó ta thu được đường thẳng d: -3x + y = 0.

Bước 2. Ta chọn điểm (0; 1) là điểm không thuộc đường thẳng d: -3x + y = 0 và thay vào biểu thức -3x + y ta có -3 . 0 + 1 = 1 > 0.

Do đó miền nghiệm của bất phương trình -3x + y ≤ 0 là nửa mặt phẳng bờ d không chứa điểm (0; 1) (miền không được gạch).

Sách bài tập Toán 10 Bài 3: Bất phương trình bậc nhất hai ẩn - Kết nối tri thức (ảnh 1)

Bài 2.3 trang 18 SBT Toán 10 Tập 1: Xác định một bất phương trình bậc nhất hai ẩn nhận nửa mặt phẳng bờ là đường thẳng d (miền không bị gạch) làm miền nghiệm (H.2.3).

Sách bài tập Toán 10 Bài 3: Bất phương trình bậc nhất hai ẩn - Kết nối tri thức (ảnh 1)

Lời giải:

Ta thấy đường thẳng d đi qua hai điểm (0; -2) và (4; 0).

Gọi phương trình đường thẳng d: y = ax + b (a ≠ 0).

Thay x = 0; y = -2 vào đường thẳng d ta có:

-2 = a . 0 + b

Þ b = -2.

Thay x = 4; y = 0 vào đường thẳng d ta có:

0 = 4 . a + (-2)

Þ 2 = 4 . a

Þ a = 24=12

Do đó phương trình đường thẳng d: y = 12x - 2

Þ 2y = x - 4

Þ x - 2y = 4.

Chọn điểm O(0; 0) là điểm không thuộc đường thẳng d và thay vào biểu thức x - 2y ta được: 0 - 2 . 0 = 0 < 4.

Do đó bất phương trình nhận nửa mặt phẳng bờ là đường thẳng d (miền không bị gạch) làm miền nghiệm là x - 2y ≤ 4.

Xem thêm lời giải sách bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:

Giải SBT Toán 10 trang 19 Tập 1

1 492 09/12/2022


Xem thêm các chương trình khác: