Giải SBT Toán 10 trang 58 Tập 1 Kết nối tri thức

Với Giải SBT Toán 10 trang 58 Tập 1 trong Bài 10: Vectơ trong mặt phẳng tọa độ Toán lớp 10 Tập 1 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Toán 10 trang 58.

1 1,126 09/12/2022


Giải SBT Toán 10 trang 58 Tập 1 Kết nối tri thức

Bài 4.22 trang 58 SBT Toán 10 Tập 1:

Trong mặt phẳng toạ độ Oxy cho ba điểm M(4; 0), N(5; 2) và P(2, 3). Tìm toạ độ các đỉnh của tam giác ABC, biết M, N, P theo thứ tự là trung điểm cạnh BC, CA, AB.

Lời giải:

Cách 1:

Gọi A(xA; yA); B(xB; yB) và C(xC; yC) là tọa độ ba đỉnh của tam giác ABC.

Ta có:

+) M(4; 0) là trung điểm của BC nên 4=xB+xC20=yB+yC2

xB+xC=8yB+yC=0                                 (1)

+) N(5; 2) là trung điểm của CA nên 5=xA+xC22=yA+yC2

xA+xC=10yA+yC=4xC=10xAyC=4yA     (2)

+) P(2; 3) là trung điểm của AB nên 2=xA+xB23=yA+yB2

xA+xB=4yA+yB=6xB=4xAyB=6yA        (3)

Thay (2) và (3) vào (1) ta được:

4xA+10xA=86yA+4yA=0142xA=8102yA=0

xA=3yA=5  A(3; 5)

Khi đó xB=43=1yB=65=1  B(1; 1)

xC=103=7yC=45=1 C(7; –1)

Vậy A(3; 5), B(1; 1) và C(7; –1).

Cách 2:

Sách bài tập Toán 10 Bài 10: Vectơ trong mặt phẳng tọa độ - Kết nối tri thức (ảnh 1)

Do M, N, P lần lượt là trung điểm của BC, CA, AB

Nên MN, NP, PM là các đường trung bình của tam giác ABC.

MN // AB, NP // BC, MP // AC.

+) Do MN // BM và NP // BM nên tứ giác MNPB là hình bình hành

MB=NP

Gọi B(xB; yB) và có M(4; 0), N(5; 2) và P(2, 3).

MB=xB4;yB NP=25;32=3;1

Khi đó MB=NPxB4=3yB=1xB=1yB=1 Þ B(1; 1)

Tương tự ta cũng có A(3; 5) và C(7; –1).

Vậy A(3; 5), B(1; 1) và C(7; –1).

Bài 4.23 trang 58 SBT Toán 10 Tập 1:

Trong mặt phẳng toạ độ Oxy cho ba điểm A(2;–1), B(1; 4) và C(7; 0).

a) Tính độ dài các đoạn thẳng AB, BC và CA. Từ đó suy ra tam giác ABC là một tam giác vuông cân.

b) Tìm toạ độ của điểm D sao cho tứ giác ABDC là một hình vuông.

Lời giải:

a) Với A(2;–1), B(1; 4) và C(7; 0) ta có:

Sách bài tập Toán 10 Bài 10: Vectơ trong mặt phẳng tọa độ - Kết nối tri thức (ảnh 1)

Do đó AB = CA =26

Nên tam giác ABC cân tại A               (1)

Mặt khác: BC2=2132=52

AB2+AC2=262+262=52

BC2 = AB2 + AC2

Theo định lí Pythagoras đảo thì tam giác ABC vuông tại A        (2)

Từ (1) và (2) suy ra tam giác ABC vuông cân tại A với AB=AC=26;BC=213.

b)

Sách bài tập Toán 10 Bài 10: Vectơ trong mặt phẳng tọa độ - Kết nối tri thức (ảnh 1)

Vì ABC là tam giác vuông cân

Nên để ABDC là hình vuông thì tứ giác ABDC là hình bình hành

CA=DB

Gọi D(xD; yD) và có A(2;–1), B(1; 4), C(7; 0).

CA=5;1DB=1xD;4yD

Do đó CA=DB5=1xD1=4yD

xD=6yD=5  D(6; 5).

Vậy tọa độ điểm D cần tìm là D(6; 5).

Bài 4.24 trang 58 SBT Toán 10 Tập 1:

Trong mặt phẳng toạ độ Oxy cho hai điểm M(–2; 1) và N(4; 5).

a) Tìm toạ độ của điểm P thuộc Ox sao cho PM = PN.

b) Tìm toạ độ của điểm Q sao cho MQ=2PN.

c) Tìm toạ độ của điểm R thoả mãn RM+2RN=0. Từ đó suy ra P, Q, R thẳng hàng.

Lời giải:

a) Gọi P(a; 0) là điểm thuộc tia Ox.

Với M(–2; 1) và N(4; 5) ta có:

Sách bài tập Toán 10 Bài 10: Vectơ trong mặt phẳng tọa độ - Kết nối tri thức (ảnh 1)

 Do đó PM = PN 2a2+12=4a2+52

(–2 – a)2 + 12 = (4 – a)2 + 52

4 + 4a + a2 + 1 = 16 – 8a + a2 + 25

12a = 36

a = 3.

Vậy P(3; 0).

b) Giả sử điểm Q có tọa độ là Q(x; y).

Với M(–2; 1), N(4; 5) và P(3; 0) ta có:

Sách bài tập Toán 10 Bài 10: Vectơ trong mặt phẳng tọa độ - Kết nối tri thức (ảnh 1)

Do đó MQ=2PNx+2=2y1=10

x=0y=11  Q(0; 11).

Vậy Q(0; 11).

c) Giả sử R(x0; y0) là điểm cần tìm.

Với M(–2; 1) và N(4; 5) ta có:

Sách bài tập Toán 10 Bài 10: Vectơ trong mặt phẳng tọa độ - Kết nối tri thức (ảnh 1)

Do đó 

Sách bài tập Toán 10 Bài 10: Vectơ trong mặt phẳng tọa độ - Kết nối tri thức (ảnh 1)

+) Ta xét ba điểm: P(3; 0), Q(0; 11) và R2;113

PQ=3;11QR=2;11311=2;223

Có: 32=11223 nên hai vectơ PQ QR cùng phương

Do đó P, Q, R thẳng hàng

Vậy ba điểm P, Q, R thẳng hàng.

Xem thêm lời giải sách bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:

Giải SBT Toán 10 trang 59, 60 Tập 1

Giải SBT Toán 10 trang 61, 62 Tập 1

1 1,126 09/12/2022


Xem thêm các chương trình khác: