Hoạt động 2 trang 59 Toán 10 Tập 2 | Cánh diều Giải Toán lớp 10

Lời giải Hoạt động 2 trang 59 Toán 10 Tập 2 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.

1 904 15/03/2023


Giải Toán 10 Cánh diều Chủ đề 2: Xây dựng mô hình hàm số bậc nhất, bậc hai biểu diễn số liệu dạng bảng

Hoạt động 2 trang 59 Toán 10 Tập 2: Mỗi nhóm thực hành xây dựng mô hình toán học dạng hàm số bậc nhất hoặc hàm số bậc hai để biểu diễn số liệu ở bảng thống kê theo các bước đã nêu ở mục I.2.

Lời giải

Theo đề tài ở hoạt động 1, ta xây dựng mô hình toán học dạng hàm số bậc nhất như sau:

Bước 1. Lựa chọn cách biểu diễn dữ liệu trên mặt phẳng tọa độ.

Đặt x = t – 2017 với t  {2017, 2018, 2019, 2020}. Do đó ta có x  {0; 1; 2; 3}.

Từ bảng ở hoạt động 1, ta có bảng thống kê như sau:

x

0

1

2

3

Tỉ lệ sinh (%)

1,98

1,98

1,98

2,06

 

Xét các điểm A(0; 1,98), B(1; 1,98), C(2; 1,98), D(3; 2,06) trong mặt phẳng tọa độ.

Bước 2. Xem tỉ lệ sinh mỗi năm f(x) là hàm số của x. Ta phải chọn f(x) là hàm số bậc nhất sao cho f(x) dự đoán (càng chính xác càng tốt) nhiệt độ ở những năm sau năm 2020, tức là tính được giá trị của f(x) với x  4.

Căn cứ vào bốn điểm A(0; 1,98), B(1; 1,98), C(2; 1,98), D(3; 2,06) ta chọn hàm số bậc nhất y = f(x) có đồ thị “gần” nhất với bốn điểm trên.

Thông thường việc tính toán trực tiếp để xác định được công thức của hàm số bậc nhất nói trên là không dễ dàng. Người ta dùng các phần mềm toán học để trợ giúp cho quá trình tính toán. Chẳng hạn, ta sử dụng phần mềm GeoGebra để xác định hàm số bậc nhất nói trên như sau:

Vào phần mềm GeoGebra, xuất diện giao diện như hình sau:

Giải Toán 10 Chủ đề 2 (Cánh diều): Xây dựng mô hình hàm số bậc nhất, bậc hai biểu diễn số liệu dạng bảng (ảnh 1) 

- Vẽ điểm A(0; 1,98) bằng cách dùng câu lệnh “=(0, 1.98)”, ta được như hình sau

Giải Toán 10 Chủ đề 2 (Cánh diều): Xây dựng mô hình hàm số bậc nhất, bậc hai biểu diễn số liệu dạng bảng (ảnh 1) 

- Tương tự, vẽ các điểm B(1; 1,98), C(2; 1,98) và D(3; 2,06) trong mặt phẳng tọa độ bằng cách dùng các câu lệnh: “=(1, 1.98)”; “=(2, 1.98)”; “=(3, 2.06)”, ta được như hình sau:

Giải Toán 10 Chủ đề 2 (Cánh diều): Xây dựng mô hình hàm số bậc nhất, bậc hai biểu diễn số liệu dạng bảng (ảnh 1) 

- Sử dụng câu lệnh:

“=FitPoly({A,B,C,D},1)” như hình sau:

Giải Toán 10 Chủ đề 2 (Cánh diều): Xây dựng mô hình hàm số bậc nhất, bậc hai biểu diễn số liệu dạng bảng (ảnh 1) 

 

ta được hàm: f(x) = 1,04x + 19,4 với đồ thị ở hình sau:

Giải Toán 10 Chủ đề 2 (Cánh diều): Xây dựng mô hình hàm số bậc nhất, bậc hai biểu diễn số liệu dạng bảng (ảnh 1) 

Bước 3. Dựa theo mô hình hàm số bậc nhất f(x) = 0,02x + 1,96, ta dự đoán được tỉ lệ sinh của các năm 2021, 2022, 2023... lần lượt là:

f(4) = 0,02 . 4 + 1,96 = 2,04;

f(5) = 0,02 . 5 + 1,96 = 2,06;

f(6) = 0,02 . 6 + 1,96 = 2,08.

Bước 4. Dự đoán trên là hợp lí, vì thế ta không cần điều chỉnh mô hình toán học đã chọn.

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: 

Hoạt động 1 trang 59 Toán 10 Tập 2: Học sinh được chia theo nhóm. Mỗi nhóm lựa chọn dữ liệu (quy mô dân số của địa phương; nhiệt độ vào các tháng...  

Hoạt động 2 trang 59 Toán 10 Tập 2: Mỗi nhóm thực hành xây dựng mô hình toán học dạng hàm số bậc nhất hoặc hàm số bậc hai để biểu diễn số liệu... 

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: 

Bài 1: Mệnh đề toán học

Bài 2: Tập hợp. Các phép toán trên tập hợp

Bài tập cuối chương 1 trang 19

Bài 1: Bất phương trình bậc nhất hai ẩn

Bài 2: Hệ bất phương trình bậc nhất hai ẩn

1 904 15/03/2023


Xem thêm các chương trình khác: