Lý thuyết Các số đặc trưng đo xu thế trung tâm – Toán 11 Kết nối tri thức
Với lý thuyết Toán lớp 11 Bài 9: Các số đặc trưng đo xu thế trung tâm chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Kết nối tri thức sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 11.
Lý thuyết Toán 11 Bài 9: Các số đặc trưng đo xu thế trung tâm - Kết nối tri thức
Bài giảng Toán 11 Bài 9: Các số đặc trưng đo xu thế trung tâm
A. Lý thuyết Các số đặc trưng đo xu thế trung tâm
1. Số trung bình của mẫu số liệu ghép nhóm
Số trung bình của mẫu số liệu ghép nhóm kí hiệu là ¯x=m1x1+...+mkxkn¯¯¯x=m1x1+...+mkxkn
Trong đó, n=m1+...+mkn=m1+...+mk là cỡ mẫu và xi=ai+ai+12xi=ai+ai+12(với i=1,2,...,ki=1,2,...,k) là giá trị đại diện của nhóm [ai;ai+1)[ai;ai+1).
2. Trung vị của mẫu số liệu ghép nhóm
Để tính trung vị của mẫu số liệu ghép nhóm, ta làm như sau:
Bước 1. Xác định nhóm chứa trung vị. Giả sử đó là nhóm thứ p: [ap;ap+1)[ap;ap+1).
Bước 2. Trung vị là Me=ap+n2−(m1+...+mp−1)mp.(ap+1−ap)Me=ap+n2−(m1+...+mp−1)mp.(ap+1−ap)
Trong đó n là cỡ mẫu, mpmp là tần số nhóm p.
Với p=1p=1, ta quy ước m1+...+mp−1=0m1+...+mp−1=0
3. Tứ phân vị của mấu số liệu ghép nhóm
Để tính tứ phân vị thứ nhất Q1Q1 của mẫu số liệu ghép nhóm, trước hết ta xác định nhóm chứa Q1Q1, giả sử đó là nhóm thứ p: [ap;ap+1)[ap;ap+1). Khi đó,
Q1=ap+n4−(m1+...+mp−1)mp.(ap+1−ap)Q1=ap+n4−(m1+...+mp−1)mp.(ap+1−ap)
Trong đó n là cỡ mẫu, mp là tần số nhóm p.
Với p=1, ta quy ước m1+...+mp−1=0
Để tính tứ phân vị thứ ba Q3 của mẫu số liệu ghép nhóm, trước hết ta xác định nhóm chứa Q3, giả sử đó là nhóm thứ p: [ap;ap+1). Khi đó,
Q3=ap+3n4−(m1+...+mp−1)mp.(ap+1−ap)
Trong đó n là cỡ mẫu, mp là tần số nhóm p. Với p=1, ta quy ước m1+...+mp−1=0
Tứ phân vị thứ hai Q2 chính là trung vị Me.
4. Mốt của mẫu số liệu ghép nhóm
Để tìm mốt của mẫu số liệu ghép nhóm, ta thực hiện theo các bước sau:
Bước 1. Xác định nhóm có tần số lớn nhất (gọi là nhóm chứa mốt), giả sử là nhóm j: [aj;aj+1).
Bước 2. Mốt được xác định là: Mo=aj+mj−mj−1(mj−mj−1)+(mj−mj+1).h
Trong đó, mj là tần số của nhóm j (quy ước m0=mk+1=0) và h là độ dài của nhóm.
- Lưu ý:
Người ta chỉ định nghĩa mốt cho mẫu ghép nhóm có độ dài các nhóm bằng nhau. Một mẫu có thể không có mốt hoặc có nhiều hơn một mốt.
- Ý nghĩa:
Mốt của mẫu số liệu ghép nhóm xấp xỉ cho mốt của mẫu số liệu gốc, nó được dùng để đo xu thế trung tâm của mẫu số liệu.
B. Bài tập Các số đặc trưng đo xu thế trung tâm
Bài 1: Cho mẫu số liệu về cân nặng (kg) của 45 học sinh lớp 11A được cho bởi bảng sau:
Cân nặng (kg) |
[40; 45) |
[45; 50) |
[50; 55) |
[55; 60) |
[60; 65) |
Số học sinh |
7 |
10 |
20 |
6 |
2 |
Tính tứ phân vị và mốt của mẫu số liệu trên.
Hướng dẫn giải
Cỡ mẫu là n = 7 + 10 + 20 + 6 + 2 = 45
Gọi x1, x2, ….., x45 là cân nặng của 45 học sinh và giả sử dãy này đã được sắp xếp theo thứ tự tăng dần.
Khi đó, trung vị là x23. Do giá trị x23 thuộc nhóm [50; 55) nên nhóm này chứa trung vị.
Do đó p = 3; a3 = 50, m3 = 20; m1 + m2 = 7 + 10 = 17; a4 – a3 = 55 – 50 = 5
Khi đó
=50+452−1720.5≈51,4 .
Vậy Me = 51,4.
Từ Me = 51,4, suy ra Q2 = 51,4.
- Tứ phân vị thứ nhất Q1 là trung vị của nửa dãy bên trái Q2 nên Q1=x11+x122.
Do x11 và x12 đều thuộc nhóm [45; 50) nên nhóm này chứa Q1. Do đó, p = 2, a2 = 45, m2 = 10, m1 = 7; a3 – a2 = 5.
Ta có Q1=a2+n4−m1m2.(a3-a2) =45+454−710.5≈47,1.
- Tứ phân vị thứ ba Q3 là trung vị của nửa dãy bên phải Q2 nên Q3=x34+x352 .
Do x34 và x35 đều thuộc nhóm [50; 55) nên nhóm này chứa Q3. Do đó, p = 3, a3 = 50, m3 = 20, m1 + m2 = 7 + 10 = 17; a4 – a3 = 55 – 50 = 5.
Ta có .
Vậy tứ phân vị: Q1 ≈ 47,1; Q2 ≈ 51,4; Q3 ≈ 54,2.
- Ta thấy tần số lớn nhất là 20 nên nhóm chứa mốt là nhóm [50; 55).
Ta có j = 3, a3 = 50, m3 = 20, m2 = 10, m4 = 6, h = 55 – 50 = 5
Khi đó
Vậy Mo ≈ 52,1.
Bài 2: Kết quả khảo sát cân nặng của 20 quả táo ở mỗi lô hàng A và B được cho bởi bảng sau:
Cân nặng (gam) |
[150; 155) |
[155; 160) |
[160; 165) |
[165; 170) |
[170; 175) |
Số quả táo lô hàng A |
1 |
4 |
10 |
3 |
2 |
Số quả táo lô hàng B |
2 |
3 |
12 |
2 |
1 |
a) Hãy ước lượng cân nặng trung bình của mỗi quả táo ở hai lô hàng trên.
b) Nếu so sánh theo số trung bình thì táo ở lô hàng nào nặng hơn?
Hướng dẫn giải
Trong mỗi khoảng cân nặng, giá trị đại diện là trung bình cộng của giá trị hai đầu mút nên ta có bảng sau:
Cân nặng (gam) |
152,5 |
157,5 |
162,5 |
167,5 |
172,5 |
Số quả táo lô hàng A |
1 |
4 |
10 |
3 |
2 |
Số quả táo lô hàng B |
2 |
3 |
12 |
2 |
1 |
Tổng số quả táo của mỗi lô hàng A và B đều là n = 20.
Cân nặng trung bình của mỗi quả táo ở lô hàng A là:
¯xA=1.152,5+4.157,5+10.162,5+3.167,5+2.172,520=6514=162,75 (gam)
Cân nặng trung bình của mỗi quả táo ở lô hàng B là:
¯xB=2.152,5+3.157,5+12.162,5+2.167,5+1.172,520= 161,75 (gam)
Theo số trung bình thì táo ở lô hàng A nặng hơn táo ở lô hàng B.
Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 sách Kết nối tri thức hay, chi tiết khác:
Lý thuyết Bài 10: Đường thẳng và mặt phẳng trong không gian
Lý thuyết Bài 11: Hai đường thẳng song song
Lý thuyết Bài 12: Đường thẳng và mặt phẳng song song
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Kết nối tri thức - hay nhất
- Văn mẫu lớp 11 - Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn 11 – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn 11 - Kết nối tri thức
- Giải SBT Ngữ văn 11 – Kết nối tri thức
- Bố cục tác phẩm Ngữ văn 11 – Kết nối tri thức
- Giải Chuyên đề học tập Ngữ văn 11 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Kết nối tri thức
- Soạn văn 11 Kết nối tri thức (ngắn nhất)
- Bài tập Tiếng Anh 11 Global success theo Unit có đáp án
- Giải sgk Tiếng Anh 11 – Global success
- Giải sbt Tiếng Anh 11 - Global Success
- Trọn bộ Từ vựng Tiếng Anh 11 Global success đầy đủ nhất
- Ngữ pháp Tiếng Anh 11 Global success
- Giải sgk Vật lí 11 – Kết nối tri thức
- Lý thuyết Vật lí 11 – Kết nối tri thức
- Giải sbt Vật lí 11 – Kết nối tri thức
- Giải Chuyên đề học tập Vật lí 11 – Kết nối tri thức
- Chuyên đề dạy thêm Vật lí 11 cả 3 sách (2024 có đáp án)
- Giải sgk Hóa học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Hóa học 11 – Kết nối tri thức
- Lý thuyết Hóa 11 - Kết nối tri thức
- Giải sbt Hóa học 11 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 11 cả 3 sách (2024 có đáp án)
- Giải sgk Sinh học 11 – Kết nối tri thức
- Lý thuyết Sinh học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Sinh học 11 – Kết nối tri thức
- Giải sbt Sinh học 11 – Kết nối tri thức
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Kết nối tri thức
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Kết nối tri thức
- Lý thuyết Kinh tế pháp luật 11 – Kết nối tri thức
- Giải sbt Kinh tế pháp luật 11 – Kết nối tri thức
- Giải sgk Lịch sử 11 – Kết nối tri thức
- Giải Chuyên đề học tập Lịch sử 11 – Kết nối tri thức
- Lý thuyết Lịch sử 11 - Kết nối tri thức
- Giải sbt Lịch sử 11 – Kết nối tri thức
- Giải sgk Địa lí 11 – Kết nối tri thức
- Giải Chuyên đề học tập Địa lí 11 – Kết nối tri thức
- Lý thuyết Địa lí 11 - Kết nối tri thức
- Giải sbt Địa lí 11 – Kết nối tri thức
- Giải sgk Công nghệ 11 – Kết nối tri thức
- Lý thuyết Công nghệ 11 - Kết nối tri thức
- Giải sbt Công nghệ 11 – Kết nối tri thức
- Giải sgk Tin học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Tin học 11 – Kết nối tri thức
- Lý thuyết Tin học 11 - Kết nối tri thức
- Giải sbt Tin học 11 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng an ninh 11 – Kết nối tri thức
- Lý thuyết Giáo dục quốc phòng 11 – Kết nối tri thức
- Giải sbt Giáo dục quốc phòng 11 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 11 – Kết nối tri thức