Lý thuyết Công thức lượng giác – Toán 11 Kết nối tri thức

Với lý thuyết Toán lớp 11 Bài 2: Công thức lượng giác chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Kết nối tri thức sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 11.

1 4,332 23/07/2024


Lý thuyết Toán 11 Bài 2: Công thức lượng giác - Kết nối tri thức

Bài giảng Toán 11 Bài 2: Công thức lượng giác

A. Lý thuyết Công thức lượng giác

1. Công thức cộng

sin(a+b)=sinacosb+cosasinbsin(ab)=sinacosbcosasinbcos(a+b)=cosacosbsinasinbcos(ab)=cosacosb+sinasinbtan(a+b)=tana+tanb1tanatanbtan(ab)=tanatanb1+tanatanb

2. Công thức nhân đôi

sin2a=2sinacosacos2a=cos2asin2a=2cos2a1=12sin2atan2a=2tana1tan2a

Suy ra, công thức hạ bậc:

sin2a=1cos2a2,cos2a=1+cos2a2

3. Công thức biến đổi tích thành tổng

cosacosb=12[cos(a+b)+cos(ab)]sinasinb=12[cos(ab)cos(a+b)]sinacosb=12[sin(a+b)+sin(ab)]

4. Công thức biến đổi tổng thành tích

cosa+cosb=2cosa+b2cosab2cosacosb=2sina+b2sinab2sina+sinb=2sina+b2cosab2sinasinb=2cosa+b2sinab2

Lý thuyết Công thức lượng giác – Toán 11 Kết nối tri thức (ảnh 1)

B. Bài tập Công thức lượng giác

Bài 1. Tính

a) sinLý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác biết sin a = 34 và 0 < a < π2;

b) cos3π8.cosπ8 + sin3π8.sinπ8.

Hướng dẫn giải

a) Vì 0<a<π2 nên cosa > 0.

Ta có: sin2a + cos2a = 1 ⇒ cos2a = 1 – sin2a = 1-Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác=716

⇒ cosa = 74.

Vậy sinLý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác=sinacosπ3cosasinπ3=34.1274.32=3218 .

Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác

Suy ra: cos3π8.cosπ8+sin3π8.sinπ8=24+24=22.

Bài 2. Tính

a) cos(–15°) + cos255°;

b) sin13π24sin5π24.

Hướng dẫn giải

a) Ta có:

cos(-15o) + cos255o = 2.cos15°+255°2.cos15°255°2

= 2.cos120o.cos(135o) = 2Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác

Vậy cos(–15°) + cos255° = 22.

b) Ta có:

Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác

Vậy sin13π24sin5π24=1+24.

Bài 3. Tính sin2a và tan2a biết cos a = 143π2<a<2π.

Hướng dẫn giải

3π2<a<2πnên sina < 0.

Ta có:

sin2a + cos2a = 1 ⇒ sin2a = 1 – cos2a = 1 - Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác = 1516

⇒ sina = 154.

Ta có: sin2a = 2sina cosa = 2.Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác.14 = -158

Ta có: tana = sinacosa=15

tan2a=2tana1tan2a=Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác==21514=157.

C. Trắc nghiệm Toán 11 Bài 2: Công thức lượng giác

Câu 1. Cho 0<α,β<π2 và thỏa mãn tanα=17, tanβ=34. Góc α+β có giá trị bằng

A. π3.   B. π4.   C. π6.   D. π2.

Đáp án đúng là: B

Ta có tanα+β=tanα+tanβ1tanα.tanβ=17+34117.34=1 suy ra a + b = π4.

Câu 2. Nếu tan(a+b) = 7, tan(a-b) = 4 thì giá trị đúng của tan2a là

A. 1127.   B. 1127.   C. 1327.    D. 1327

Đáp án đúng là: A

Ta có tan2a = tan[(a+b)+(a-b)] = tana+b+tanab1+tana+b.tanab=7+417.4=1127.

Câu 3. Rút gọn biểu thức M = tanx - tany.

A. M = tan(x-y).   B. M = sinx+ycosx.cosy.

C. M = sinxycosx.cosy.   D. M = tanxtany1+tanx.tany.

Đáp án đúng là: C

Ta có M = tanx - tany = sinxcosxsinycosy=sinxcosycosxsinycosxcosy

=sinxycosxcosy.

Câu 4. Giá trị của biểu thức P=sin5π18cosπ9sinπ9cos5π18cosπ4cosπ12sinπ4sinπ12

A. 1.   B. 12   C. 22    D. 32

Đáp án đúng là: A

Áp dụng công thức 12 Bài tập Công thức lượng giác (có đáp án) | Kết nối tri thức Trắc nghiệm Toán 11

Khi đó sin5π18cosπ9sinπ9cos5π18=sin5π18π9=sinπ6=12.

cosπ4cosπ12sinπ4sinπ12=cosπ4+π12=cosπ3=12.

Vậy P=12:12=1.

Câu 5. Trong ABC, nếu sinBsinC= 2cosA thì ABC là tam giác có tính chất nào sau đây?

A. Cân tại B.   B. Cân tại A.   C. Cân tại C.   D. Vuông tại B.

Đáp án đúng là: A

Ta có sinBsinC= 2cosAsinB = 2sinC.cosA = sin(C+A)+sin(C-A)

Mặt khác A+B+C = πB = π-(A+C) sinB = sin(A+C).

Do đó, ta được sin(C-A) = 0A = C.

Câu 6. Cho góc α thỏa mãn π2<α<πsinα=45. Tính P = sin2(α+π).

A. P = -2425.   B. P = 2425.   C. P = -1225   D. P =1225.

Đáp án đúng là: A

Ta có P = sin2(α+π) = sin(2α+2π) = sin2α = 2sinαcosα.

Từ hệ thức sin2α+cos2α=1, suy ra cosα=±1sin2α=±35.

Do π2<α<π nên ta chọn cosα=35 .

Thay sinα=45cosα=35 vào P , ta được P=2.45.35=2425 .

Câu 7. Cho x, y là các góc nhọn và dương thỏa mãn cotx = 34., coty = 17. Tổng x+y bằng

A. π4.   B. 3π4.   C. π3.   D. π.

Đáp án đúng là: B

Ta có cot(x+y) = cotx.coty1cotx+coty=34.17134+17=1.

Mặt khác 0<x,y<π2 suy ra 0<x+y<π. Do đó x+y = 3π4.

Câu 8. Nếu tanα và tanβ là hai nghiệm của phương trình x2+px+q = 0 (q1) thì tan(α+β) bằng

A. pq1.   B. -pq1.   C. 2p1q.   D. 2p1q.

Đáp án đúng là: A

Vì tanα , tanβ là hai nghiệm của phương trình x2+px+q = 0 nên theo định lí Viet, ta có Khi đó

12 Bài tập Công thức lượng giác (có đáp án) | Kết nối tri thức Trắc nghiệm Toán 11. Khi đó tan(α+β) = tanα+tanβ1tanαtanβ=pq1.

Câu 9. Nếu α+β+γ = π2 và cotα + cotγ = 2cotβ thì cotα.cotγ bằng

A. 3.   B. - 3 .   C. 3.   D. -3.

Đáp án đúng là: C

Từ giả thiết, ta có α+β+γ=π2β=π2α+γ.

Suy ra cotα+cotγ=2cotβ=2.cotπ2α+γ

=2.tanα+γ=2.tanα+tanγ1tanα.tanγ

Mặt khác tanα+tanγ1tanα.tanγ=1cotα+1cotγ11cotα.1cotγ=cotα+cotγcotα.cotγ1 nên suy ra

cotα+cotγ=2.cotα+cotγcotα.cotγ1cotα.cotγ1=2cotα.cotγ=3.

Câu 10. Khẳng định nào sau đây đúng?

A. sin(2018a) = 2018sina.cosa.

B. sin(2018a) = 2018sin(1009a).cos(1009a).

C. sin(2018a) = 2sinacosa.

D. sin(2018a) = 2sin(1009a).cos(1009a).

Đáp án đúng là: D

Áp dụng công thức sin2α = 2sinα.cosα ta được

sin(2018a) = 2sin(1009a).cos(1009a).

Câu 11. Khẳng định nào sai trong các khẳng định sau?

A. sin2x=1cos2x2.   B. cos2x=1+cos2x2.

C. sinx=2sinx2cosx2.   D. cos3x=cos3xsin3x.

Đáp án đúng là: D

Ta có cos3x = 4cos3x - 3cosx.

Câu 12. Công thức nào sau đây đúng?

A. cos3a = 3cosa - 4cos3a.   B. cos3a = 4cos3a - 3cosa.

C. cos3a = 3cos3a - 4cosa.   D. cos3a = 4cosa - 3cos3a.

Đáp án đúng là: B

Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 sách Kết nối tri thức hay, chi tiết khác:

Lý thuyết Bài 3: Hàm số lượng giác

Lý thuyết Bài 4: Phương trình lượng giác cơ bản

Lý thuyết Bài 5: Dãy số

Lý thuyết Bài 6: Cấp số cộng

Lý thuyết Bài 7: Cấp số nhân

1 4,332 23/07/2024


Xem thêm các chương trình khác: