Giải Toán 10 trang 57 Tập 1 | Kết nối tri thức Giải Toán lớp 10

Với giải bài tập Toán lớp 10 trang 57 Tập 1 trong Bài 9: Tích của một vecto với một số sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 57 Tập 1.

1 393 03/06/2023


Giải Toán 10 trang 57 Tập 1

HĐ 3 trang 57 Toán 10 Tập 1: Với u0 và hai số thực k, t, những khẳng định nào sau đây là đúng?

a) Hai vectơ ktu và ktu có cùng độ dài bằng ktu.

b) Nếu kt ≥ 0 thì cả hai vectơ ktu,ktu cùng hướng với u.

c) Nếu kt < 0 thì cả hai vectơ ktu,ktu ngược hướng với u.

d) Hai vectơ ktu và ktu bằng nhau.

Lời giải

a) Ta có: ktu=ktu=ktu=ktu và ktu=ktu

Suy ra ktu=ktu=ktu

Do đó hai vectơ ktu và ktu có cùng độ dài bằng ktu.

Vậy khẳng định a) đúng.

b) - Với kt ≥ 0 thì vectơ ktu cùng hướng với vectơ u

Với vecto u khác vecto 0 và hai số thực k, t, những khẳng định nào sau đây là đúng (ảnh 1)

Với kt ≥ 0 k0t0 hoặc k0t0 

+) Trường hợp 1: k ≥ 0 và t ≥ 0

Với t ≥ 0 thì vectơ tu cùng hướng với vectơ u;

Với k ≥ 0 thì vectơ k(tu)cùng hướng với vectơ tu;

Với vecto u khác vecto 0 và hai số thực k, t, những khẳng định nào sau đây là đúng (ảnh 1)

Do đó với k ≥ 0 và t ≥ 0 thì ktu cùng hướng với vectơ u(do cùng hướng với tu).

+) Trường hợp 2: k ≤ 0 và t ≤ 0

Với t ≤ 0 thì vectơ tu ngược hướng với vectơ u;

Với k ≤ 0 thì vectơ k(tungược hướng với vectơ tu;

Với vecto u khác vecto 0 và hai số thực k, t, những khẳng định nào sau đây là đúng (ảnh 1)

Do đó với k ≤ 0 và t ≤ 0 thì ktu cùng hướng với vectơ u(do cùng ngược hướng với tu).

Kết hợp hai trường hợp ta có: với kt ≥ 0 thì ktu cùng hướng với vectơ u.

Suy ra: nếu kt ≥ 0 thì cả hai vecto ktu,ktu cùng hướng với u.

Vậy khẳng định b) là đúng.

c) – Với kt < 0 thì vectơ ktu ngược hướng với vectơ u

Với vecto u khác vecto 0 và hai số thực k, t, những khẳng định nào sau đây là đúng (ảnh 1)

- Với kt < 0 k>0t<0 hoặc k<0t>0 

+) Trường hợp 1: k > 0 và t < 0

Với t < 0 thì vectơ tu ngược hướng với vectơ u;

Với k > 0 thì vectơ ktucùng hướng với vectơ tu;

Với vecto u khác vecto 0 và hai số thực k, t, những khẳng định nào sau đây là đúng (ảnh 1)

Do đó với k > 0 t < 0 thì ktu ngược hướng với vectơ u

+) Trường hợp 2: k < 0 và t > 0

Với t > 0 thì vectơ tu cùng hướng với vectơ u;

Với k < 0 thì vectơ ktu ngược hướng với vectơ tu;

Với vecto u khác vecto 0 và hai số thực k, t, những khẳng định nào sau đây là đúng (ảnh 1)

Do đó với k < 0 và t > 0 thì ktu ngược hướng với vectơ u.

Kết hợp hai trường hợp ta có: với kt < 0 thì ktu ngược hướng với vectơ u.

Suy ra nếu kt < 0 thì cả hai vectơ ktu,ktu ngược hướng với u.

Vậy khẳng định c) là đúng.

d) Theo câu a thì hai vectơ ktu và ktu có cùng độ dài.

+ Nếu kt ≥ 0 thì cả hai vectơ ktu,ktu cùng hướng với u.

Suy ra hai vectơ ktu,ktu cùng hướng.

+ Nếu kt < 0 thì cả hai vectơ ktu,ktu ngược hướng với u.

Suy ra hai vectơ ktu,ktu cùng hướng.

Do đó hai vectơ ktu,ktu cùng hướng với mọi k, t.

ktu=ktu

Hay hai vectơ ktu và ktu bằng nhau.

Vậy khẳng định d) đúng.

HĐ 4 trang 57 Toán 10 Tập 1: Hãy chỉ ra trên Hình 4.26 hai vectơ 3u+v và 3u+3v. Từ đó, nêu mối quan hệ giữa 3u+v và 3u+3v.

Lời giải

Hãy chỉ ra trên Hình 4.26 hai vectơ  3( vecto u + vecto v) và 3 vecto u + 3 vecto v. Từ đó, nêu mối quan hệ (ảnh 1)

Giả sử OE=u,OF=v được biểu diễn như hình vẽ trên.

+ Xét hình bình hành OEMF, ta có:

u+v=OE+OF=OM (quy tắc hình bình hành)

3u+v=3OM

Trên hình vẽ ta thấy OC = 3OM và OC cùng hướng với OM.

Do đó 3u+v=3OM=OC     (1)

+ Trên hình vẽ ta thấy OA=3u và OA cùng hướng với u 

OB=3v và OB cùng hướng với v 

Do đó OA=3u,OB=3v 

Xét hình bình hành OACB, ta có:

3u+3v=OA+OB=OC (quy tắc hình bình hành)   (2)

Từ (1) và (2)3u+v=3u+3v=OC

Vậy 3u+v=3u+3v.

Luyện tập 2 trang 57 Toán 10 Tập 1: Cho tam giác ABC có trọng tâm G. Chứng minh với điểm O tùy ý, ta có:

OA+OB+OC=3OG

Lời giải

Vì G là trọng tâm tam giác ABC nên ta có: GA+GB+GC=0 (Tính chất trọng tâm của tam giác)

Với điểm O bất kì ta có: 

OA+OB+OC=OG+GA+OG+GB+OG+GC

=OG+OG+OG+GA+GB+GC

=3OG+0

=3OG.

Vậy OA+OB+OC=3OG.

Luyện tập 3 trang 57 Toán 10 Tập 1: Trong Hình 4.27, hãy biểu thị mỗi vectơ u,v theo hai vectơ a,b, tức là tìm các số x, y, z, t để u=xa+yb,v=ta+zb.

Trong Hình 4.27, hãy biểu thị mỗi vectơ  u, v theo hai vectơ a, b (ảnh 1)

Lời giải

Giả sử các điểm O, A, B, C, M, N, P là các điểm như trong hình vẽ dưới đây.

Trong Hình 4.27, hãy biểu thị mỗi vectơ  u, v theo hai vectơ a, b (ảnh 1)

Khi đó ta có:

OA=a;OB=2b;OC=u;OM=3b;ON=2a;OP=v 

Xét hình bình hành OACB, có: OC=OA+OB (quy tắc hình bình hành)

Suy ra u=a+2b.

Xét hình bình hành OMPN, có: OP=OM+ON (quy tắc hình bình hành)

Suy ra v=3b+2a=2a+3b.

Vậy u=a+2b,v=2a+3b.

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác: 

Giải Toán 10 trang 55 Tập 1

Giải Toán 10 trang 56 Tập 1

Giải Toán 10 trang 58 Tập 1

Giải Toán 10 trang 59 Tập 1

1 393 03/06/2023


Xem thêm các chương trình khác: