Giải Toán 10 trang 24 Tập 2 | Kết nối tri thức Giải Toán lớp 10

Với giải bài tập Toán lớp 10 trang 24 Tập 2 trong Bài 17: Dấu của tam thức bậc hai sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 24 Tập 2.

1 1,436 05/06/2023


Giải Toán 10 trang 24 Tập 2

Bài 6.15 trang 24 Toán 10 Tập 2: Xét dấu các tam thức bậc hai sau:

a) 3x2 – 4x + 1;

b) x2 + 2x + 1;

c) – x2 + 3x – 2;

d) – x2 + x – 1.

Lời giải

a) Xét tam thức f(x) = 3x2 – 4x + 1 có ∆' = (– 2)2 – 3 . 1 = 1 > 0, hệ số a = 3 > 0 và có hai nghiệm phân biệt x1 = 13; x2 = 1.

Ta có bảng xét dấu f(x):

x

– ∞                   13                        1                     + ∞

f(x)

             +          0                      0            +

 

Vậy f(x) > 0 khi x;131;+ và f(x) < 0 khi x13;1.

b) Xét tam thức f(x) = x2 + 2x + 1 có ∆' = 12 – 1 . 1 = 0 và a > 1 nên f(x) có nghiệm kép x = – 1 và f(x) > 0 với mọi x ≠ – 1.  

c) Xét tam thức f(x) = – x2 + 3x – 2 có ∆ = 32 – 4 . (– 1) . (– 2) = 1 > 0, hệ số a = – 1 < 0 và có hai nghiệm phân biệt x1 = 1; x2 = 2.

Ta có bảng xét dấu f(x):

x

– ∞                   1                        2                     + ∞

f(x)

                      0           +          0            

 

Vậy f(x) < 0 khi x  (– ∞; 1)  (2; + ∞) và f(x) > 0 khi x  (1; 2).  

d) Xét tam thức f(x) = – x2 + x – 1 có ∆ = 12 – 4 . (– 1) . (– 1) = – 3 < 0 và hệ số a = – 1 < 0 nên f(x) < 0 với mọi x  ℝ.

Bài 6.16 trang 24 Toán 10 Tập 2: Giải các bất phương trình bậc hai:

a) x2 – 1 ≥ 0;

b) x2 – 2x – 1 < 0;

c) – 3x2 + 12x + 1 ≤ 0;

d) 5x2 + x + 1 ≥ 0.

Lời giải

a) Tam thức f(x) = x2 – 1 có ∆ = 02 – 4 . 1 . (– 1) = 4 > 0 nên f(x) có hai nghiệm x1 = – 1 và x2 = 1.

Vì hệ số a = 1 > 0 nên ta có bảng xét dấu f(x):

x

– ∞                  – 1                      1                     + ∞

f(x)

             +           0                    0            +

 

Vậy tập nghiệm của bất phương trình là S = (– ∞; – 1]  [1; + ∞).

b) Tam thức f(x) = x2 – 2x – 1 có ∆' = (– 1)2 – 1 . (– 1) = 2 > 0 nên f(x) có hai nghiệm x1 = 1 2 và x2 = 1 + 2.

Vì hệ số a = 1 > 0 nên ta có bảng xét dấu f(x):

x

– ∞                1 2                   1 + 2                     + ∞

f(x)

             +            0                        0                +

Vậy tập nghiệm của bất phương trình là S = 12;1+2.

c) Tam thức f(x) = – 3x2 + 12x + 1 có ∆' = 62 – (– 3) . 1 = 39 > 0 nên f(x) có hai nghiệm x1=6393 và x2=6+393.

Vì hệ số a = – 3 < 0 nên ta có bảng xét dấu f(x):

x

– ∞                6393                   6+393                  + ∞

f(x)

                         0              +             0                

Vậy tập nghiệm của bất phương trình là S = ;63936+393;+.

d) Tam thức f(x) = 5x2 + x + 1 có ∆ = 12 – 4 . 5 . 1 = – 19 < 0 và hệ số a = 5 > 0 nên f(x) luôn dương (cùng dấu a) với mọi x  ℝ.

Vậy tập nghiệm của bất phương trình là S = ℝ.

Bài 6.17 trang 24 Toán 10 Tập 2: Tìm các giá trị của tham số m để tam thức bậc hai sau dương với mọi x  ℝ:

x2 + (m + 1)x + 2m + 3.

Lời giải

Xét tam thức f(x) = x2 + (m + 1)x + 2m + 3.

Ta có: ∆ = (m + 1)2 – 4 . 1 . (2m + 3) = m2 + 2m + 1 – 8m – 12 = m2 – 6m – 11.

Mặt khác, hệ số a = 1 > 0.

Do đó, để f(x) luôn dương (cùng dấu hệ số a) với mọi x  ℝ thì ∆ < 0

m2 – 6m – 11 < 0.

Xét tam thức g(m) = m2 – 6m – 11 có ∆'g = (– 3)2 – 1 . (– 11) = 20 > 0 nên g(m) có hai nghiệm m1 = 325 và m2 = 3+25.

Vì hệ số ag = 1 > 0 nên ta có bảng xét dấu g(m):

m

– ∞                325                   3+25                  + ∞

g(m)

             +             0                          0                +

Khi đó g(m) < 0 với mọi m 325;3+25.

Hay ∆ < 0 với mọi m 325;3+25.

Vậy m 325;3+25 thì tam thức bậc hai đã cho luôn dương với mọi x  ℝ.

Bài 6.18 trang 24 Toán 10 Tập 2:

Một vật được ném theo phương thẳng đứng xuống dưới từ độ cao 320 m với vận tốc ban đầu v0 = 20 m/s. Hỏi sau ít nhất bao nhiêu giây, vật đó cách mặt đất không quá 100 m? Giả thiết rằng sức cản của không khí là không đáng kể.

Lời giải

Độ cao của vật so với mặt đất được mô tả bởi công thức

h(t) = h0 + v0t – 12gt2,

trong đó v0 = 20 m/s là vận tốc ban đầu của vật, t là thời gian chuyển động tính bằng giây, g là gia tốc trọng trường (thường lấy g ≈ 9,8 m/s2) và độ cao h(t) tính bằng mét.  

Khi đó ta có: h(t) = 320 + 20t – 12 . 9,8 . t2 hay h(t) = –  4,9t2 + 20t + 320, đây là một hàm số bậc hai.  

Vật cách mặt đất không quá 100 m khi và chỉ khi h(t) ≤ 100, tức là – 4,9t2 + 20t + 320 ≤ 100 hay tương đương 4,9t2 – 20t – 220 ≥ 0 (1).

Xét tam thức f(t) = 4,9t2 – 20t – 220 có ∆' = (– 10)2 – 4,9 . (– 220) = 1 178 > 0 nên f(t) có hai nghiệm t1=1011784,9 và t2=10+11784,9.

Mà hệ số af = 4,9 > 0 nên ta có bảng xét dấu f(t):

t

– ∞                1011784,9                   10+11784,9               + ∞

f(t)

             +             0                             0                +

Suy ra bất phương trình (1) có nghiệm t ≤ 1011784,9 hoặc t ≥ 10+11784,9.

Mà thời gian t > 0 nên t ≥ 10+11784,9≈ 9,05.

Vậy sau ít nhất khoảng 9,05 giây thì vật đó cách mặt đất không quá 100 m.

Bài 6.19 trang 24 Toán 10 Tập 2: Xét đường tròn đường kính AB = 4 và một điểm M di chuyển trên đoạn AB, đặt AM = x (H.6.19). Xét hai đường tròn đường kính AM và MB. Kí hiệu S(x) diện tích phần hình phẳng nằm trong hình tròn lớn và nằm ngoài hai hình tròn nhỏ. Xác định các giá trị của x để diện tích S(x) không vượt quá một nửa tổng diện tích hai hình tròn nhỏ.

Giải Toán 10 Bài 17 (Kết nối tri thức): Dấu của tam thức bậc hai (ảnh 1) 

Lời giải

Do M di chuyển trên đoạn AB và AM = x nên x ≥ 0 (xảy ra trường hợp bằng 0 khi M trùng A), lại có AM ≤ AB (dấu bằng xảy ra khi M trùng B) nên x ≤ 4, vậy điều kiện của x là 0 ≤ x ≤ 4.

Gọi S, S1, S2 lần lượt là diện tích hình tròn đường kính AB, AM và MB.

Đường tròn lớn có đường kính AB = 4 nên bán kính của hình tròn này là R = 2.

Diện tích hình tròn đường kính AB là S = πR2 = π . 22 = 4π.  

Đường tròn đường kính AM = x có bán kính là r1 = x2.

Diện tích hình tròn đường kính AM là S1 = πr12 = π.x22=x24π.

Ta có: AM + MB = AB (do M nằm trên đoạn AB)  MB = AB – AM = 4 – x.

Đường tròn đường kính MB có bán kính là r2 = 4x2.

Diện tích hình tròn đường kính MB là S2 = πr22 = π.4x22=4x24π.

Tổng diện tích hai hình tròn đường kính AM và MB là:

S12= S1 + S2 = x24π+4x24π = x2+4x24π=x24x+82π.

Diện tích phần hình phẳng nằm trong hình tròn lớn (hình tròn đường kính AB) và nằm ngoài hai hình tròn nhỏ (hình tròn đường kính AM và MB) là

S(x) = S – S12 = 4πx24x+82π=x2+4x2π.

Do diện tích S(x) không vượt quá một nửa tổng diện tích hai hình tròn nhỏ hay diện tích S(x) nhỏ hơn hoặc bằng nửa tổng diện tích hai hình tròn nhỏ hay S(x) ≤ 12S12.

Khi đó ta có: x2+4x2π12.x24x+82π

x2+4xx24x+82

 – 2x2 + 8x ≤ x2 – 4x + 8

3x2 – 12x + 8 ≥ 0

Xét tam thức f(x) = 3x2 – 12x + 8 có ∆' = (– 6)2 – 3 . 8 = 12 > 0 nên f(x) có hai nghiệm x1 = 6233 và x2 = 6+233.

Mà hệ số af = 3 > 0 nên ta có bảng xét dấu f(x):

x

– ∞                6233                   6+233                  + ∞

f(x)

             +             0                          0                +

 

Từ đó suy ra f(x) ≥ 0 với mọi x;62336+233;+.

Kết hợp với điều kiện 0 ≤ x ≤ 4.

Vậy x0;62336+233;4.

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:

Giải Toán 10 trang 19 Tập 2

Giải Toán 10 trang 20 Tập 2

Giải Toán 10 trang 22 Tập 2

Giải Toán 10 trang 23 Tập 2

Giải Toán 10 trang 24 Tập 2

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:

Bài 18: Phương trình quy về phương trình bậc hai

Bài tập cuối chương 6

Bài 19: Phương trình đường thẳng

Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách.

Bài 21: Đường tròn trong mặt phẳng tọa độ

1 1,436 05/06/2023


Xem thêm các chương trình khác: