Giải SBT Toán 7 trang 9 Tập 1 Cánh diều

Với Giải SBT Toán 7 trang 9 Tập 1 trong Bài 1: Tập hợp Q các số hữu tỉ Toán lớp 7 Tập 1 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Toán 7 trang 9.

1 1,723 30/12/2022


Giải SBT Toán 7 trang 9 Tập 1 Cánh diều

Bài 1 trang 9 SBT Toán 7 Tập 1: Các số 0,5; 11; 3,111 457; −34; −1,3; 13;  98 có là số hữu tỉ không? Vì sao?

Lời giải:

Ta có 

Sách bài tập Toán 7 Bài 1: Tập hợp ℚ các số hữu tỉ - Cánh diều (ảnh 1)

Vì các số Sách bài tập Toán 7 Bài 1: Tập hợp ℚ các số hữu tỉ - Cánh diều (ảnh 1) có dạng ab, với a, b Î, b ≠ 0.

Nên các số Sách bài tập Toán 7 Bài 1: Tập hợp ℚ các số hữu tỉ - Cánh diều (ảnh 1) là số hữu tỉ.

Vậy các số 0,5; 11; 3,111 457; −34; −1,3; 13;  98 là số hữu tỉ.

Bài 2 trang 9 SBT Toán 7 Tập 1: Chọn kí hiệu "Î", "Ï" thích hợp cho   ?  .

a) 13    ?    ;                 b) 345  987    ?    ;                  c) 0    ?    ;

d) 103475     ?    ;              e) 301756     ?    ;                          g) 13499    ?    ;

h) 11,01     ?                 i) 21128     ?    ;                        k) 0,3274    ?    

Lời giải:

Vì −13 là số nguyên âm nên −13 không thuộc tập hợp số tự nhiên.

Do đó 13        ;

∙ Vì −345 987 là số nguyên âm nên −345 987 thuộc tập hợp số nguyên.

Do đó 345  987        ;

∙ Ta có: 0=01. Vì 0; 1 Î ℤ; 1 ≠ 0 nên 01 là số hữu tỉ hay 0 thuộc tập hợp ℚ.

Do đó 0         ;

∙ Ta có: 103475=78475. Vì 784; 75 Î ℤ; 75 ≠ 0 nên 78475 là số hữu tỉ hay 103475 thuộc tập hợp ℚ.

Do đó 103475         ;

∙ Vì 301756 nên 301756 không thuộc tập hợp số nguyên.

Do đó 301756         ;

∙ Vì 13; −499 Î ℤ; −499 ≠ 0 nên 13499 là số hữu tỉ hay 13499 thuộc tập hợp ℚ.

Do đó 13499    ?    ;

∙ Số −11,01 không phải là số nguyên nên 11,01         

∙ Vì −21; −128 Î ℤ; −128 ≠ 0 nên 21128 là số hữu tỉ hay 21128 thuộc tập hợp ℚ.

Do đó 21128         

∙ Ta có: 0,3274=3  27410  000. Vì 3 274; 10 000 Î ℤ; 10 000 ≠ 0 nên 3  27410  000 là số hữu tỉ hay 0,3274 thuộc tập hợp ℚ.

Do đó 0,3274        

Vậy ta điền vào ô trống như sau:

a) 13        ;                b) 345  987        ;                  c) 0        ;

d) 103475         ;             e) 301756         ;                         g) 13499        ;

h) 11,01                     i) 21128         ;                       k) 0,3274        

Bài 3 trang 9 SBT Toán 7 Tập 1: Trong giờ học nhóm, ba bạn An, Bình, Chi lần lượt phát biểu như sau:

- An: "Số 0 là số nguyên và không phải là số hữu tỉ."

- Bình: "Số hữu tỉ là số viết được dưới dạng phân số 01 với a, b Î ℤ."

- Chi: "Mỗi số nguyên là một số hữu tỉ."

Theo em, bạn nào phát biểu đúng, bạn nào phát biểu sai? Vì sao?

Lời giải:

- An phát biểu sai do 0 viết được dưới dạng phân số ab nên 0 là số hữu tỉ.

- Bình phát biểu sai do số hữu tỉ là số viết được dưới dạng phân số ab với a, b Î ℤ, b ≠ 0.

- Chi phát biểu đúng do mỗi số nguyên a viết được dưới dạng phân số .

Bài 4 trang 9 SBT Toán 7 Tập 1: Quan sát trục số ở Hình 5, điểm nào biểu diễn số hữu tỉ 34?

Sách bài tập Toán 7 Bài 1: Tập hợp ℚ các số hữu tỉ - Cánh diều (ảnh 1)

Lời giải:

a)

Sách bài tập Toán 7 Bài 1: Tập hợp ℚ các số hữu tỉ - Cánh diều (ảnh 1)

Ta thấy: 34 là số hữu tỉ dương và 0<34<1.

Ta chia đoạn thẳng đơn vị thành 4 phần bằng nhau, lấy một đoạn làm đơn vị mới.

Khi đó, điểm biểu diễn số hữu tỉ 34 là điểm nằm bên phải điểm 0 và cách điểm 0 một khoảng bằng 3 lần đơn vị mới.

Do đó điểm C biểu diễn số hữu tỉ 34.

Vậy trên trục số ở Hình 5, điểm C biểu diễn số hữu tỉ 34.

Bài 5 trang 9 SBT Toán 7 Tập 1: Tìm số đối của mỗi số hữu tỉ sau: 37221; 931171; 8719  543; 41,02; −791,8.

Lời giải:

Số đối của 37221 37221;

Số đối của 931171 931171=931171;

Số đối của 8719  543 8719  543=8719  543;

Số đối của 41,02 là −41,02;

Số đối của −791,8 là 791,8.

Vậy số đối của các số Sách bài tập Toán 7 Bài 1: Tập hợp ℚ các số hữu tỉ - Cánh diều (ảnh 1); 41,02; −791,8 lần lượt là Sách bài tập Toán 7 Bài 1: Tập hợp ℚ các số hữu tỉ - Cánh diều (ảnh 1); −41,02; 791,8.

Xem thêm lời giải sách bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:

Giải SBT Toán 7 trang 10 Tập 1

1 1,723 30/12/2022


Xem thêm các chương trình khác: