Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC còn P, N lần lượt là chân đường vuông góc hạ từ M
Lời giải Bài 6 trang 66 vở thực hành Toán 8 Tập 1 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Vở thực hành Toán 8.
Giải Vở thực hành Toán 8 Bài tập cuối chương 3
Bài 6 trang 66 vở thực hành Toán 8 Tập 1: Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC còn P, N lần lượt là chân đường vuông góc hạ từ M xuống CA, AB (H.3.45).
a) Chứng minh hai tam giác vuông CMP và MBN bằng nhau.
b) Chứng minh tứ giác APMN là một hình chữ nhật.
Từ đó suy ra N là trung điểm của AB, P là trung điểm của AC.
c) Lấy điểm Q sao cho P là trung điểm của MQ, chứng minh tứ giác AMCQ là một hình thoi.
d) Nếu AB = AC, tức là tam giác ABC vuông cân tại A thì tứ giác AMCQ có là hình vuông không? Vì sao?
Lời giải:
a) Ta có: PM ⊥ AC, AB ⊥ AC ⇒ PM // AB ⇒ (hai góc đồng vị).
Hai tam giác vuông CMP và MBN có: CM = MB, (chứng minh trên)
⇒ ∆CMP = ∆MBN (cạnh huyền – góc nhọn).
b) Tứ giác ANMP có ba góc vuông nên là hình chữ nhật.
⇒ PM = AN.
∆CMP = ∆MBN ⇒ PM = BN.
Từ đó, suy ra PM = AN = BN nên N là trung điểm của AB.
Tương tự, ta có CP = MN = AP, tức P là trung điểm của AC.
c) Tứ giác AMCQ có hai đường chéo AC và MQ cắt nhau tại trung điểm mỗi đường nên là hình bình hành, mà QM ⊥ AC nên AMCQ là một hình thoi.
d) Khi AB = AC, tức là tam giác ABC vuông cân tại A thì
⇒ (do AC là một đường chéo của hình thoi AMCQ).
Vậy hình thoi AMCQ có một góc vuông nên là hình vuông.
Vậy khi AB = AC thì tứ giác AMCQ là hình vuông.
Xem thêm Lời giải bài tập Vở thực hành Toán 8 Kết nối tri thức hay, chi tiết khác:
Câu 1 trang 65 vở thực hành Toán 8 Tập 1: Chọn phương án đúng. Trong các khẳng định sau, khẳng định nào đúng? A. Không có tứ giác nào mà không có góc tù...
Câu 2 trang 65 vở thực hành Toán 8 Tập 1: Trong các khẳng định sau, khẳng định nào đúng? Khẳng định nào sai? a) Tứ giác có hai đường chéo bằng nhau là hình bình hành...
Câu 3 trang 65 vở thực hành Toán 8 Tập 1: Trong các khẳng định sau, khẳng định nào đúng? Khẳng định nào sai? a) Tứ giác có hai đường chéo bằng nhau và hai cạnh đối nào...
Xem thêm Lời giải bài tập Vở thực hành Toán 8 Kết nối tri thức hay, chi tiết khác:
Bài 15: Định lí Thalès trong tam giác
Bài 16: Đường trung bình của tam giác
Xem thêm các chương trình khác:
- Soạn văn 8 Kết nối tri thức (hay nhất)
- Văn mẫu lớp 8 - Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn 8 – Kết nối tri thức
- Bố cục tác phẩm Ngữ văn lớp 8 – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn lớp 8 - Kết nối tri thức
- Giải SBT Ngữ văn 8 – Kết nối tri thức
- Giải Vở thực hành Ngữ văn 8 Kết nối tri thức | VTH Ngữ văn 8 Tập 1, Tập 2
- Nội dung chính tác phẩm Ngữ văn lớp 8 – Kết nối tri thức
- Soạn văn 8 Kết nối tri thức (ngắn nhất)
- Bài tập Tiếng Anh 8 Global success theo Unit có đáp án
- Giải sgk Tiếng Anh 8 – Global success
- Giải sbt Tiếng Anh 8 - Global Success
- Trọn bộ Từ vựng Tiếng Anh 8 Global success đầy đủ nhất
- Ngữ pháp Tiếng Anh 8 Global success
- Giải sgk Khoa học tự nhiên 8 – Kết nối tri thức
- Lý thuyết Khoa học tự nhiên 8 – Kết nối tri thức
- Giải sbt Khoa học tự nhiên 8 – Kết nối tri thức
- Giải vth Khoa học tự nhiên 8 – Kết nối tri thức
- Giải sgk Lịch sử 8 – Kết nối tri thức
- Lý thuyết Lịch sử 8 - Kết nối tri thức
- Giải sbt Lịch sử 8 – Kết nối tri thức
- Giải sgk Địa lí 8 – Kết nối tri thức
- Lý thuyết Địa lí 8 - Kết nối tri thức
- Giải sbt Địa lí 8 – Kết nối tri thức
- Giải VTH Địa lí 8 Kết nối tri thức | Vở thực hành Địa lí 8
- Giải sgk Giáo dục công dân 8 – Kết nối tri thức
- Lý thuyết Giáo dục công dân 8 – Kết nối tri thức
- Giải sbt Giáo dục công dân 8 – Kết nối tri thức
- Giải sgk Công nghệ 8 – Kết nối tri thức
- Lý thuyết Công nghệ 8 - Kết nối tri thức
- Giải sbt Công nghệ 8 – Kết nối tri thức
- Giải sgk Tin học 8 – Kết nối tri thức
- Lý thuyết Tin học 8 - Kết nối tri thức
- Giải sbt Tin học 8 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 8 – Kết nối tri thức