Cho M là một điểm nằm trong tam giác đều ABC. Qua M kẻ các đường thẳng song song với BC, CA, AB
Lời giải Bài 4 trang 50 vở thực hành Toán 8 Tập 1 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Vở thực hành Toán 8.
Giải Vở thực hành Toán 8 Luyện tập chung trang 49
Bài 4 trang 50 vở thực hành Toán 8 Tập 1: Cho M là một điểm nằm trong tam giác đều ABC. Qua M kẻ các đường thẳng song song với BC, CA, AB lần lượt cắt AB, BC, CA tại các điểm P, Q, R.
a) Chứng minh tứ giác APMR là hình thang cân.
b) Chứng minh rằng chu vi tam giác PQR bằng tổng độ dài MA + MB + MC.
c) Hỏi với vị trí nào của M thì tam giác PQR là tam giác đều.
Lời giải:
(H.3.17). a) Do MR // AP nên tứ giác APMR là hình thang.
Ta có (do ∆ABC đều).
Do MP // BC nên Từ đó suy ra nên APMR là hình thang cân.
b) Tương tự câu a, ta có các tứ giác BQMP và CRMQ là những hình thang cân.
Do APMR, BQMP và CRMQ là những hình thang cân, suy ra RP = AM, PQ = BM, QR = CM (hai đường chéo của hình thang cân).
Chu vi của tam giác PQR là
PQ + RP + QR = BM + AM + CM.
c) Tam giác PQR là tam giác đều có nghĩa là PQ = QR = RP, tức là MB = MC = MA.
Vậy M cách đều ba đỉnh A, B, C tức M là giao điểm của ba đường trung trực của tam giác ABC.
*Phương pháp giải
*Lý thuyết:
1. Đường trung trực của tam giác
– Trong một tam giác, đường trung trực của mỗi cạnh được gọi là đường trung trực của tam giác đó.
Chú ý: Đường trung trực của một tam giác có thể không đi qua đỉnh nào của tam giác.
2. Tính chất ba đường trung trực của tam giác
– Ba đường trung trực của một tam giác cùng đi qua một điểm.
Nhận xét:
+ Để xác định giao điểm ba đường trung trực của một tam giác, ta chỉ cần vẽ hai đường trung trực bất kì và xác định giao điểm của hai đường đó.
+ Giao điểm ba đường trung trực của một tam giác cách đều ba đỉnh của tam giác đó.
Do đó, trong một tam giác ba đường trung trực cùng đi qua một điểm và điểm đó cách đều ba đỉnh của tam giác.
Xem thêm
Lý thuyết Tính chất ba đường trung trực của tam giác – Toán 7 Cánh diều
Xem thêm Lời giải bài tập Vở thực hành Toán 8 Kết nối tri thức hay, chi tiết khác:
Bài 3 trang 50 vở thực hành Toán 8 Tập 1: Tính số đo các góc của tứ giác ABCD trong Hình 3.16...
Xem thêm Lời giải bài tập Vở thực hành Toán 8 Kết nối tri thức hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn 8 Kết nối tri thức (hay nhất)
- Văn mẫu lớp 8 - Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn 8 – Kết nối tri thức
- Bố cục tác phẩm Ngữ văn lớp 8 – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn lớp 8 - Kết nối tri thức
- Giải SBT Ngữ văn 8 – Kết nối tri thức
- Giải Vở thực hành Ngữ văn 8 Kết nối tri thức | VTH Ngữ văn 8 Tập 1, Tập 2
- Nội dung chính tác phẩm Ngữ văn lớp 8 – Kết nối tri thức
- Soạn văn 8 Kết nối tri thức (ngắn nhất)
- Bài tập Tiếng Anh 8 Global success theo Unit có đáp án
- Giải sgk Tiếng Anh 8 – Global success
- Giải sbt Tiếng Anh 8 - Global Success
- Trọn bộ Từ vựng Tiếng Anh 8 Global success đầy đủ nhất
- Ngữ pháp Tiếng Anh 8 Global success
- Giải sgk Khoa học tự nhiên 8 – Kết nối tri thức
- Lý thuyết Khoa học tự nhiên 8 – Kết nối tri thức
- Giải sbt Khoa học tự nhiên 8 – Kết nối tri thức
- Giải vth Khoa học tự nhiên 8 – Kết nối tri thức
- Giải sgk Lịch sử 8 – Kết nối tri thức
- Lý thuyết Lịch sử 8 - Kết nối tri thức
- Giải sbt Lịch sử 8 – Kết nối tri thức
- Giải sgk Địa lí 8 – Kết nối tri thức
- Lý thuyết Địa lí 8 - Kết nối tri thức
- Giải sbt Địa lí 8 – Kết nối tri thức
- Giải VTH Địa lí 8 Kết nối tri thức | Vở thực hành Địa lí 8
- Giải sgk Giáo dục công dân 8 – Kết nối tri thức
- Lý thuyết Giáo dục công dân 8 – Kết nối tri thức
- Giải sbt Giáo dục công dân 8 – Kết nối tri thức
- Giải sgk Công nghệ 8 – Kết nối tri thức
- Lý thuyết Công nghệ 8 - Kết nối tri thức
- Giải sbt Công nghệ 8 – Kết nối tri thức
- Giải sgk Tin học 8 – Kết nối tri thức
- Lý thuyết Tin học 8 - Kết nối tri thức
- Giải sbt Tin học 8 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 8 – Kết nối tri thức