Toán 9 Bài 1 (Chân trời sáng tạo): Căn bậc hai
Với giải bài tập Toán lớp 9 Bài 1: Căn bậc hai sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 9 Bài 1.
Giải Toán 9 Bài 1: Căn bậc hai
Hoạt động khám phá 1 trang 37 Toán 9 Tập 1: Cho trục số được vẽ trên lưới ô vuông đơn vị như Hình 1.
a) Tính độ dài cạnh huyền OB của tam giác vuông OAB.
b) Vẽ đường tròn tâm O bán kính OB, đường tròn này cắt trục số tại hai điểm P và Q.
Gọi x là số thực được biểu diễn bởi điểm P, y là số thực được biểu diễn bởi điểm Q.
Thay mỗi ? bằng số thích hợp để có các đẳng thức:
x2 = ?, y2 = ?.
Lời giải:
a) Áp dụng định lí Pythagore vào tam giác vuông OAB ta có:
OB =
b)
Thực hành 1 trang 38 Toán 9 Tập 1: Tính các căn bậc hai của mỗi số sau:
a) 36
b)
c) 1,44
d) 0
Lời giải:
a) Ta có 62 = 36, nên 36 có hai căn bậc hai là 6 và – 6
b) Ta có = , nên có hai căn bậc hai là và -
c) Ta có (1,2)2 = 1,44 nên 1,44 có hai căn bậc hai là 1,2 và – 1,2
d) Số 0 chỉ có một căn bậc hai là chính nó
Thực hành 2 trang 38 Toán 9 Tập 1: Sử dụng dấu căn bậc hai để viết các căn bậc hai của mỗi số:
a) 11
b) 2,5
c) – 0,09
Lời giải:
a) Các căn bậc hai của 11 là và -
b) Các căn bậc hai của 2,5 là và -
c) Do – 0,09 là số âm nên nó không có căn bậc hai.
Thực hành 3 trang 38 Toán 9 Tập 1: Tính
a)
b)
c)
Lời giải:
a)
b)
c)
Thực hành 4 trang 39 Toán 9 Tập 1: Tính giá trị của các biểu thức:
a)
b)
c)
Lời giải:
a)
b)
c)
Vận dụng 1 trang 39 Toán 9 Tập 1: Biết rằng hình A và hình vuông B trong Hình 2 có diện tích bằng nhau. Tính độ dài cạnh x của hình vuông B.
Lời giải:
Xét hình A:
Ta có diện tích cả hình vuông cạnh 3cm là : 3.3 = 9 cm2
Ta có diện tích cả hình vuông cạnh cm là : . = 2 cm2
Suy ra diện tích hình A là: 9 – 2 = 7 cm2
Mà hình vuông B bằng diện tích hình A là 7 cm2
Nên x.x = x2 = 7 suy ra x = cm.
Thực hành 5 trang 39 Toán 9 Tập 1: Sử dụng máy tính cầm tay, tính gần đúng các số sau (kết quả làm tròn đến chữa số thập phân thứ ba):
a)
b)
c)
Lời giải:
a)
b)
c)
Thực hành 6 trang 39 Toán 9 Tập 1: Sử dụng máy tính cầm tay để:
a) Tìm các căn bậc hai của 10,08 (kết quả làm tròn đến chữ số thập phân thứ tư)
b) Tính giá trị của biểu thức (kết quả làm tròn đến chữ số thập phân thứ năm)
Lời giải:
a) Ta có hai căn bậc hai của 10,08 là và
b)
Hoạt động khám phá 2 trang 40 Toán 9 Tập 1: Một chiếc thang dài 5m tựa vào bức tường như Hình 3.
a) Nếu chân thang cách chân tường x (m) thì đỉnh thang ở độ cao bao nhiêu so với chân tường?
b) Tính độ cao trên khi x nhận giá trị lần lượt là 1; 2; 3; 4.
Lời giải:
a) Đỉnh thang có độ cao là: (m).
b) Khi x = 1 thì độ cao là (m)
Khi x = 2 thì độ cao là (m)
Khi x = 3 thì độ cao là (m)
Khi x = 4 thì độ cao là (m)
Thực hành 7 trang 40 Toán 9 Tập 1: Với giá trị nào của x thì biểu thức A = xác định? Tính giá trị của A khi x = 5 (kết quả làm tròn đến chữ số thập phân thứ hai).
Lời giải:
ĐKXĐ: 3x + 6 0 suy ra x - 2
Thay x = 5 vào A = , ta được: A =
Thực hành 8 trang 40 Toán 9 Tập 1: Cho biểu thức P = . Tính giá trị của P khi:
a) a = 5; b = 0
b) a = 5; b = -5
c) a = 2; b = -4
Lời giải:
a) Thay a = 5; b = 0 vào P = , ta được:
P =
b) Thay a = 5; b = -5 vào P = , ta được:
P =
c) Thay a = 2; b = -4 vào P = thì biểu thức P không khác định vì
a2 – b2 = -12 < 0 .
Vận dụng 2 trang 40 Toán 9 Tập 1: Một trạm phát sóng được đặt ở vị trí B cách đường tàu một khoảng AB = 300 m. Đầu tàu đang ở vị trí C, cách vị trí A một khoảng AC = x (m) (Hình 4)
a) Viết biểu thức (theo x) biểu thị khoảng cách từ trạm phát sóng đến đầu tàu.
b) Tính khoảng cách trên khi x = 400; x = 1000 (kết quả làm tròn đến hàng đơn vị của mét).
Lời giải:
a) Ta có khoảng cách từ trạm phát sóng đến đầu tàu là: (m)
b) Thay x = 400 thì khoảng cách từ trạm phát sóng đến đầu tàu là: (m)
Thay x = 1000 thì khoảng cách từ trạm phát sóng đến đầu tàu là: (m)
Bài tập
Đề bài
Bài 1 trang 41 Toán 9 Tập 1: Tìm các căn bậc hai của mỗi số sau:
a) 16
b) 2500
c)
d) 0,09
Lời giải:
a) Ta có 42 = 16, nên 16 có hai căn bậc hai là 4 và – 4
b) Ta có 502 = 2500, nên 2500 có hai căn bậc hai là 50 và – 50
c) Ta có nên có hai căn bậc hai là và –
d) Ta có 0,32 = 0,09 nên 0,09 có hai căn bậc hai là 0,3 và – 0,3.
Bài 2 trang 41 Toán 9 Tập 1: Tính
a)
b)
c)
d)
Lời giải:
a)
b)
c)
d)
Bài 3 trang 41 Toán 9 Tập 1: Biết rằng 252 = 625, tìm các căn bậc hai của các số 625 và 0,0625
Lời giải:
625 có hai căn bậc hai là 25 và – 25
0,0625 có hai căn bậc hai là 0,25 và – 0,25.
Bài 4 trang 41 Toán 9 Tập 1: Sử dụng máy tính cầm tay, tính (kết quả làm tròn đế chữ số thập phân thứ tư):
a)
b)
c)
Lời giải:
a)
b)
c)
Bài 5 trang 41 Toán 9 Tập 1: Tính giá trị của các biểu thức:
a)
b)
Lời giải:
a)
b)
Bài 6 trang 41 Toán 9 Tập 1: Tìm x, biết:
a) x2 = 121
b) 4x2 = 9
c) x2 = 10
Lời giải:
a) x2 = 121
x2 = 112
b) 4x2 = 9
(2x)2 = 32
c) x2 = 10
Bài 7 trang 41 Toán 9 Tập 1: Tính giá trị của các biểu thức sau khi x = 16; y = 9
a)
b)
c)
d)
Lời giải:
a) Thay x = 16; y = 9, ta được
b) Thay x = 16; y = 9, ta được
c) Thay x = 16; y = 9, ta được
c) Thay x = 16; y = 9, ta được
Bài 8 trang 41 Toán 9 Tập 1: Cho biểu thức P = . Tính giá trị của P khi:
a) x = 3; y = - 2
b) x = 1; y = 4
Lời giải:
a) Thay x = 3; y = - 2 vào P = , ta được: P =
b) Thay x = 1; y = 4 vào P = không xác định vì 12 – 1.4 + 1 = - 2 < 0.
Bài 9 trang 41 Toán 9 Tập 1: Trên cần trục ở Hình 5, hai trụ a và b đứng cách nhau 20 m, hai xà ngang c và d lần lượt có độ cao 20 m và 45 m so với mặt đất. Xà chéo x có độ dài bao nhiêu mét (kết quả làm tròn đến hàng đơn vị)?
Lời giải:
Nhìn vào hình 5:
Ta có độ dài một cạnh góc vuông là 20 m và cạnh góc vuông còn lại là 45 – 20 = 25 m
x = (m).
Xem thêm các chương trình khác:
- Soạn văn 9 Chân trời sáng tạo (hay nhất)
- Văn mẫu 9 - Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn 9 – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn 9 - Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn 9 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn 9 – Chân trời sáng tạo
- Soạn văn 9 Chân trời sáng tạo (ngắn nhất)
- Giải sgk Tiếng Anh 9 - Friends plus
- Trọn bộ Từ vựng Tiếng Anh lớp 9 Friends plus đầy đủ nhất
- Trọn bộ Ngữ pháp Tiếng Anh 9 Friends plus đầy đủ nhất
- Giải sbt Tiếng Anh 9 – Friends plus
- Giải sgk Khoa học tự nhiên 9 – Chân trời sáng tạo
- Lý thuyết Khoa học tự nhiên 9 – Chân trời sáng tạo
- Giải sbt Khoa học tự nhiên 9 – Chân trời sáng tạo
- Giải sgk Lịch sử 9 – Chân trời sáng tạo
- Giải sbt Lịch sử 9 – Chân trời sáng tạo
- Giải sgk Địa lí 9 – Chân trời sáng tạo
- Giải sbt Địa lí 9 – Chân trời sáng tạo
- Giải sgk Tin học 9 – Chân trời sáng tạo
- Giải sbt Tin học 9 – Chân trời sáng tạo
- Giải sgk Công nghệ 9 – Chân trời sáng tạo
- Giải sgk Giáo dục công dân 9 – Chân trời sáng tạo
- Giải sbt Giáo dục công dân 9 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 9 – Chân trời sáng tạo