Lý thuyết Phương trình lượng giác cơ bản – Toán 11 Chân trời sáng tạo

Với lý thuyết Toán lớp 11 Bài 5: Phương trình lượng giác cơ bản chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Chân trời sáng tạo sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 11.

1 2,303 30/10/2023


Lý thuyết Toán 11 Bài 5: Phương trình lượng giác cơ bản - Chân trời sáng tạo

Giải Toán 11 Bài 5: Phương trình lượng giác cơ bản

A. Lý thuyết Phương trình lượng giác cơ bản

1. Phương trình tương đương

- Hai phương trình được gọi là tương đương khi chúng có cùng tập nghiệm.

- Nếu phương trình f(x) =0 tương đương với phương trình g(x) =0 thì ta viết f(x)=0g(x)=0

- Các phép biến đổi tương đương:

+ Cộng hay trừ hai vế với cùng một số hoặc cùng một biểu thức.

+ Nhân hoặc chia 2 vế với cùng một số khác 0 hoặc với cùng một biểu thức luôn có giá trị khác 0.

2. Phương trình sinx=m

Phương trình sinx = m ,

  • Nếu |m|1 thì phương trình vô nghiệm.
  • Nếu |m|1 thì phương trình có nghiệm:

Khi đó, tồn tại duy nhất α[π2;π2] thoả mãn sinα=m,

sinx=msinx=sinα [x=α+k2πx=πα+k2π(kZ)

* Chú ý:

a, Nếu số đo của góc αđược cho bằng đơn vị độ thì sinx=sinαo[x=αo+k360ox=180oαo+k360o(kZ)

b, Một số trường hợp đặc biệt

sinx=0x=kπ,kZ.sinx=1x=π2+k2π,kZ.sinx=1x=π2+k2π,kZ.

3. Phương trình cosx=m

Phương trình cosx=m,

  • Nếu |m|1 thì phương trình vô nghiệm.
  • Nếu |m|1 thì phương trình có nghiệm:

Khi |m|1sẽ tồn tại duy nhất α[0;π] thoả mãn cosα=m. Khi đó:

cosx=mcosx=cosα [x=α+k2πx=α+k2π(kZ)

* Chú ý:

a, Nếu số đo của góc αđược cho bằng đơn vị độ thì cosx=cosαo[x=αo+k360ox=αo+k360o(kZ)

b, Một số trường hợp đặc biệt

cosx=0x=π2+kπ,kZ.cosx=1x=k2π,kZ.cosx=1x=π+k2π,kZ.

4. Phương trình tanx=m

Phương trình tanx=m có nghiệm với mọi m.

Với mọi mR, tồn tại duy nhất α(π2;π2) thoả mãn tanα=m. Khi đó:

tanx=mtanx=tanαx=α+kπ,kZ.

*Chú ý: Nếu số đo của góc αđược cho bằng đơn vị độ thì

tanx=tanαox=αo+k180o,kZ.

5. Phương trình cotx=m

Phương trình cotx=m có nghiệm với mọi m.

Với mọi mR, tồn tại duy nhất α(0;π) thoả mãn cotα=m. Khi đó:

cotx=mcotx=cotαx=α+kπ,kZ.

*Chú ý: Nếu số đo của góc αđược cho bằng đơn vị độ thì

cotx=cotαox=αo+k180o,kZ.

6. Giải phương trình lượng giác bằng máy tính cầm tay

Bước 1. Chọn đơn vị đo góc (độ hoặc radian).

Muốn tìm số đo độ, ta ấn: SHIFT MODE 3 (CASIO FX570VN).

Muốn tìm số đo radian, ta ấn: SHIFT MODE 4 (CASIO FX570VN).

Bước 2. Tìm số đo góc.

Khi biết SIN, COS, TANG của góc αta cần tìm bằng m, ta lần lượt ấn các phím SHIFT và một trong các phím SIN, COS, TANG rồi nhập giá trị lượng giác m và cuối cùng ấn phím “BẰNG =”. Lúc này trên màn hình cho kết quả là số đo của góc α.

B. Bài tập Phương trình lượng giác cơ bản

Bài 1. Giải phương trình: cos3x.tan5x = sin7x.

Hướng dẫn giải

Điều kiện cos 5x ≠ 0

Khi đó phương trình đã cho trở thành

2sin5x.cos3x = 2sin7x.cos5x

⇔ sin8x = sin12x

Lý thuyết Toán 11 Chân trời sáng tạo Bài 5: Phương trình lượng giác

• Với x=kπ2 thì ta có:

cos5x=cos5kπ2=coskπ2+2kπ=coskπ20

⇔ k = 2m (m ∈ ℤ)

• Với x=π20+kπ10 thì ta có:

cos5x=cosπ4+kπ20

Vậy phương trình đã cho có nghiệm là x=mπ;  x=π20+kπ10 (m, k ∈ ℤ).

Bài 2. Tìm x ∈ [0; 14] sao cho: cos3x – 4cos2x + 3cos x – 4 = 0. (1)

Hướng dẫn giải

Ta có: cos3x = 4cos3x – 3cosx

(1) ⇔ cos3x + 3cos x – 4(1 + cos2x) = 0

⇔ 4cos3x – 8cos2x = 0

⇔ 4cos3x.(cos x – 2) = 0

⇔ cos x = 0

x=π2+kπ (k ∈ ℤ)

Vì x ∈ [0; 14] ⇒ {xπ2;3π2;5π2;7π2.}

Vậy {xπ2;3π2;5π2;7π2.}

Bài 3. Giải các phương trình lượng giác sau:

a) 2sin2x + 2sinx.cosx – 5cos2x = 0

b) 3sinxcosx=2

Hướng dẫn giải

a) 2sin2x+2sinx.cosx5cos2x=0

2tan2x+3tanx5=0

Lý thuyết Toán 11 Chân trời sáng tạo Bài 5: Phương trình lượng giác

Vậy phương trình đã cho có nghiệm là x=π4+kπ hoặc x1,2+kπ (k ∈ ℤ).

b) 3sinxcosx=2

32sinx12cosx=22

sinx.cosπ6cosx.sinπ6=22

sinxπ6=sinπ4

Lý thuyết Toán 11 Chân trời sáng tạo Bài 5: Phương trình lượng giác

Vậy phương trình đã cho có nghiệm là x=5π12+2kπ hoặc x=11π12+2kπ (k ∈ ℤ).

Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 sách Chân trời sáng tạo hay, chi tiết khác:

Lý thuyết Bài 1: Dãy số

Lý thuyết Bài 2: Cấp số cộng

Lý thuyết Bài 3: Cấp số nhân

Lý thuyết Bài 1: Giới hạn của dãy số

Lý thuyết Bài 2: Giới hạn của hàm số

1 2,303 30/10/2023


Xem thêm các chương trình khác: