Lý thuyết Góc lượng giác – Toán 11 Chân trời sáng tạo
Với lý thuyết Toán lớp 11 Bài 1: Góc lượng giác chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Chân trời sáng tạo sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 11.
Lý thuyết Toán 11 Bài 1: Góc lượng giác - Chân trời sáng tạo
Bài giảng Toán 11 Bài 1: Góc lượng giác
A. Lý thuyết Góc lượng giác
1. Góc lượng giác
* Khái niệm góc lượng giác
- Cho 2 tia Oa, Ob.
Nếu tia Om quay quanh gốc O của nó theo một chiều cố định bắt đầu từ vị trí tia Oa và dừng ở vị trí tia Ob thì ta nói tia Om quét một góc lượng giác có tia đầu Oa, tia cuối Ob.
Kí hiệu: (Oa, Ob).
- Khi tia Om quay một góc ta nói số đo của góc lượng giác (Oa, Ob) bằng , kí hiệu sđ(Oa, Ob) =
* Chú ý:
- Với 2 tia Oa, Ob cho trước, có vô số góc lượng giác tia đầu Oa, tia cuối Ob. Ta dùng chung kí hiệu (Oa, Ob) cho tất cả các góc lượng giác này.
- Số đo các góc lượng giác có cùng tia đầu Oa, tia cuối Ob sai khác nhau một bội nguyên của 360o có công thức là:
Sđ(Oa,Ob) = + k360o, .
* Hệ thức Chasles
Với 3 tia Ou, Ov, Ow bất kì ta có:
Sđ(Ou,Ov) + sđ(Ov, Ow) = sđ(Ou,Ow) +k360o, .
2. Đơn vị radian
Trên đường tròn bán kính R tùy ý, góc ở tâm chắn một cung có độ dài đúng bằng R được gọi là một góc có số đo 1 radian (rad).
Ta có: rad, do đó 1 rad , rad.
rad , rad.
3. Đường tròn lượng giác
Trong mặt phẳng tọa độ Oxy, cho đường tròn tâm O bán kính 1. Trên đường tròn này chọn điểm A(1;0) làm gốc, chiều dương là chiều ngược chiều kim đồng hồ và chiều âm là chiều xùng chiều kim đồng hồ. Đường tròn cùng với gốc và chiều như trên gọi là đường tròn lượng giác.
Sơ đồ tư duy Góc lượng giác
B. Bài tập Góc lượng giác
Bài 1. Đổi số đo của các góc sau đây sang độ:
a)
b)
Hướng dẫn giải
Bài 2. Biểu diễn trên đường tròn lượng giác góc lượng giác có số đo 135°:
Hướng dẫn giải
Ta có:
Vậy điểm biểu diễn góc lượng giác có số đo 135° là điểm M nằm trên phần đường tròn lượng giác thuộc góc phần tư thứ II sao cho
Bài 3. Đổi số đo của các góc sau đây sang radian:
a) −125°;
b) 42°;
Hướng dẫn giải
a) Ta có:
b) Ta có:
Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 sách Chân trời sáng tạo hay, chi tiết khác:
Lý thuyết Bài 2: Giá trị lượng giác của một góc lượng giác
Lý thuyết Bài 3: Các công thức lượng giác
Lý thuyết Bài 4: Hàm số lượng giác và đồ thị
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Chân trời sáng tạo (hay nhất)
- Văn mẫu lớp 11 - Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 11 - Chân trời sáng tạo
- Giải SBT Ngữ văn 11 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 11 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Chân trời sáng tạo
- Soạn văn 11 Chân trời sáng tạo (ngắn nhất)
- Giải sgk Tiếng Anh 11 – Friends Global
- Giải sbt Tiếng Anh 11 - Friends Global
- Trọn bộ Từ vựng Tiếng Anh 11 Friends Global đầy đủ nhất
- Bài tập Tiếng Anh 11 Friends Global theo Unit có đáp án
- Giải sgk Vật lí 11 – Chân trời sáng tạo
- Lý thuyết Vật lí 11 – Chân trời sáng tạo
- Giải sbt Vật lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Vật lí 11 – Chân trời sáng tạo
- Giải sgk Hóa học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Hóa học 11 – Chân trời sáng tạo
- Lý thuyết Hóa 11 - Chân trời sáng tạo
- Giải sbt Hóa học 11 – Chân trời sáng tạo
- Giải sgk Sinh học 11 – Chân trời sáng tạo
- Lý thuyết Sinh học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Sinh học 11 – Chân trời sáng tạo
- Giải sbt Sinh học 11 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Chân trời sáng tạo
- Lý thuyết Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sbt Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sgk Lịch sử 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Lịch sử 11 – Chân trời sáng tạo
- Lý thuyết Lịch sử 11 - Chân trời sáng tạo
- Giải sbt Lịch sử 11 – Chân trời sáng tạo
- Giải sgk Địa lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Địa lí 11 – Chân trời sáng tạo
- Lý thuyết Địa lí 11 - Chân trời sáng tạo
- Giải sbt Địa lí 11 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 11 – Chân trời sáng tạo