Lý thuyết Giới hạn của dãy số – Toán 11 Chân trời sáng tạo

Với lý thuyết Toán lớp 11 Bài 1: Giới hạn của dãy số chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Chân trời sáng tạo sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 11.

1 1,686 30/10/2023


Lý thuyết Toán 11 Bài 1: Giới hạn của dãy số - Chân trời sáng tạo

Bài giảng Toán 11 Bài 1: Giới hạn của dãy số

A. Lý thuyết Giới hạn của dãy số

1. Giới hạn hữu hạn của dãy số

a, Giới hạn 0 của dãy số

- Dãy số (un) có giới hạn 0 khi n dần tới dương vô cực, nếu |un| có thể nhỏ hơn một số dương bé tùy ý , kể tử một số hạng nào đó trở đi.

Kí hiệu limn+un=0 hay un0khi n+ hay limun=0.

* Chú ý:

+ lim1nk=0,kZ.

+ Nếu |q|<1 thì limqn=0

b, Giới hạn hữu hạn của dãy số

Ta nói dãy số (un) có giới hạn là số thực a khi n dần tới dương vô cực, nếu limn+(una)=0, kí hiệu limn+un=a hay una khi n+.

* Chú ý: Nếu un=c(c là hằng số) thì limn+un=c

2. Các phép toán về giới hạn hữu hạn của dãy số

Cho limn+un=a,limn+vn=b và c là hằng số thì

  • limn+(un±vn)=a±b
  • limn+(c.un)=c.alimn+(un.vn)=a.b
  • limn+(unvn)=ab(b0)
  • Nếu un0 thì với mọi n và limn+un=a thì a0limn+un=a

3. Tổng của cấp số nhân lùi vô hạn

Cấp số nhân (un) có công bội q thỏa mãn |q|<1 được gọi là cấp số nhân lùi vô hạn.

Tổng của cấp số nhân lùi vô hạn là:

S=u11q(|q|<1)

4. Giới hạn vô cực

- Dãy số (un)được gọi là có giới hạn +khi n+nếu un có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi, kí hiệu limx+un=+ hay un+ khi n+.

- Dãy số (un) được gọi là có giới hạn khi n+ nếu limx+(un)=+, kí hiệu limx+un= hay un khi n+.

* Chú ý:

  • limx+un=+limn+(un)=
  • Nếu limx+un=+(hoặclimx+un=) thì lim1un=0.
  • Nếu limx+un=0,un>0limx+vn=0,nthì limn+(unvn)=+.

*Nhận xét:

a,limnk=+,kN,k1.b,limqn=+;qR,q>1.

Lý thuyết Giới hạn của dãy số – Toán 11 Chân trời sáng tạo (ảnh 1)

B. Bài tập Giới hạn của dãy số

Bài 1. Tìm số hạng tổng quát của cấp số nhân lùi vô hạn có công bội là -35 và tính tổng của cấp số nhân lùi vô hạn.

Hướng dẫn giải

Lý thuyết Toán 11 Chân trời sáng tạo Bài 1: Giới hạn của dãy số

Suy ra số hạng đầu tiên của dãy là: u1 = 1.

Khi đó tổng cấp số nhân lùi vô hạn là:

Lý thuyết Toán 11 Chân trời sáng tạo Bài 1: Giới hạn của dãy số

Vậy số hạng tổng quát của cấp số nhân lùi vô hạn là: Lý thuyết Toán 11 Chân trời sáng tạo Bài 1: Giới hạn của dãy số và tổng của cấp số nhân lùi vô hạn là S=58 .

Bài 2. Tính các giới hạn sau:

a) lim2n3+n24n13 ;

b) lim4.2n2.3n+13n .

Hướng dẫn giải

Lý thuyết Toán 11 Chân trời sáng tạo Bài 1: Giới hạn của dãy số

Lý thuyết Toán 11 Chân trời sáng tạo Bài 1: Giới hạn của dãy số

Bài 3. Tính các giới hạn sau:

a) lim2n+6n3 ;

b) limn3n+312n3 ;

c) lim3n4n+23.4n5.2n .

Hướng dẫn giải

a) lim2n+6n3=lim2+6n13n=2 ;

b) limn3n+312n3=lim1nn3+3n31n32=lim11n2+3n31n32=12 ;

Lý thuyết Toán 11 Chân trời sáng tạo Bài 1: Giới hạn của dãy số

Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 sách Chân trời sáng tạo hay, chi tiết khác:

Lý thuyết Bài 2: Giới hạn của hàm số

Lý thuyết Bài 3: Hàm số liên tục

Lý thuyết Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian

Lý thuyết Bài 2: Hai đường thẳng song song

Lý thuyết Bài 3: Đường thẳng và mặt phẳng song song

1 1,686 30/10/2023


Xem thêm các chương trình khác: