Lý thuyết Đường thẳng và mặt phẳng song song – Toán 11 Chân trời sáng tạo
Với lý thuyết Toán lớp 11 Bài 3: Đường thẳng và mặt phẳng song song chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Chân trời sáng tạo sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 11.
Lý thuyết Toán 11 Bài 3: Đường thẳng và mặt phẳng song song - Chân trời sáng tạo
Bài giảng Toán 11 Bài 3: Đường thẳng và mặt phẳng song song
A. Lý thuyết Đường thẳng và mặt phẳng song song
1. Đường thẳng song song với mặt phẳng
- Nếu a và có một điểm chung duy nhất thì ta nói a và cắt nhau tại A. Kí hiệu hay .
- Nếu a và có từ 2 điểm chung phân biệt trở lên thì ta nói a nằm trong hay chứa a. Kí hiệu hay .
- Nếu a và không có điểm chung thì ta nói a song song với hay song song với a. Kí hiệu là hay .
*Đường thẳng a song song với mặt phẳng (P) nếu chúng không có điểm chung.
2. Điều kiện để một đường thẳng song song với một mặt phẳng
- Nếu đường thẳng a không nằm trong mặt phẳng (P) và song song với một đường thẳng b nào đó nằm trong (P) thì ta nói .
3. Tính chất cơ bản của đường thẳng và mặt phẳng song song
Cho đường thẳng a song song với mặt phẳng (P). Nếu mặt phẳng (Q) chứa a và cắt (P) theo giao tuyến b thì a // b.
* Hệ quả:
- Cho đường thẳng a song song với mặt phẳng (P). Nếu qua điểm M thuộc (P) ta vẽ đường thẳng b song song với a thì b phải nằm trong (P).
- Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.
* Mặt phẳng đi qua một trong hai đường thẳng chéo nhau và song song vơi đường thẳng còn lại
- Nếu a và b là hai đường thẳng chéo nhau thì qua a, có một và chỉ một mặt phẳng song song với b.
B. Bài tập Đường thẳng và mặt phẳng song song
Bài 1. Cho tứ diện ABCD. Gọi G và F lần lượt là trọng tâm của các tam giác ACD và BCD. Chứng minh rằng GF // (ABC) và GF // (ABD)
Hướng dẫn giải
Gọi M là trung điểm của cạnh CD
G là trọng tâm của tam giác ACD nên ta có (1)
Lại có F là trọng tâm của tam giác BCD nên suy ra (2)
Từ (1) và (2) suy ra
Xét tam giác MBA có nên theo định lí Ta-lét đảo ta có GF // AB
Mà AB (ABC) nên suy ra GF // (ABC)
Tương tự AB (ABD) nên suy ra GF // (ABD).
Bài 2. Cho tứ diện ABCD. Trên cạnh AB lấy một điểm M sao cho . Trên cạnh AC lấy điểm N sao cho MN // (BCD). Tính tỉ số ?
Hướng dẫn giải
Ta có:
Do MN // (BCD) mà MN (ABC)
Và với BC = (BCD) (ABC) nên suy ra MN // BC
Xét tam giác ABC có MN // BC nên theo định lí Ta-lét ta có:
Bài 3. Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Gọi M là trung điểm của cạnh AB. Tìm thiết diện của hình chóp khi cắt bởi mặt phẳng đi qua M, song song với BD và SA.
Hướng dẫn giải
Qua M kẻ ME song song với BD, với E thuộc AD
Gọi O và I lần lượt là giao điểm của AC với BD và ME
Qua M kẻ MF song song với AS, với F thuộc SB
Qua E kẻ EG song song với AS, với G thuộc SD
Qua I kẻ IH song song với AS, với H thuộc SC
Khi đó ngũ giác MEGHF là thiết diện cần tìm.
Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 sách Chân trời sáng tạo hay, chi tiết khác:
Lý thuyết Bài 2: Hai đường thẳng song song
Lý thuyết Bài 4: Hai mặt phẳng song song
Lý thuyết Bài 5: Phép chiếu song song
Lý thuyết Bài 1: Số trung bình và mốt của mẫu số liệu ghép nhóm
Lý thuyết Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Chân trời sáng tạo (hay nhất)
- Văn mẫu lớp 11 - Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 11 - Chân trời sáng tạo
- Giải SBT Ngữ văn 11 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 11 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Chân trời sáng tạo
- Soạn văn 11 Chân trời sáng tạo (ngắn nhất)
- Giải sgk Tiếng Anh 11 – Friends Global
- Giải sbt Tiếng Anh 11 - Friends Global
- Trọn bộ Từ vựng Tiếng Anh 11 Friends Global đầy đủ nhất
- Bài tập Tiếng Anh 11 Friends Global theo Unit có đáp án
- Giải sgk Vật lí 11 – Chân trời sáng tạo
- Lý thuyết Vật lí 11 – Chân trời sáng tạo
- Giải sbt Vật lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Vật lí 11 – Chân trời sáng tạo
- Giải sgk Hóa học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Hóa học 11 – Chân trời sáng tạo
- Lý thuyết Hóa 11 - Chân trời sáng tạo
- Giải sbt Hóa học 11 – Chân trời sáng tạo
- Giải sgk Sinh học 11 – Chân trời sáng tạo
- Lý thuyết Sinh học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Sinh học 11 – Chân trời sáng tạo
- Giải sbt Sinh học 11 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Chân trời sáng tạo
- Lý thuyết Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sbt Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sgk Lịch sử 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Lịch sử 11 – Chân trời sáng tạo
- Lý thuyết Lịch sử 11 - Chân trời sáng tạo
- Giải sbt Lịch sử 11 – Chân trời sáng tạo
- Giải sgk Địa lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Địa lí 11 – Chân trời sáng tạo
- Lý thuyết Địa lí 11 - Chân trời sáng tạo
- Giải sbt Địa lí 11 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 11 – Chân trời sáng tạo