Lý thuyết Phương trình, bất phương trình mũ và lôgarit – Toán 11 Chân trời sáng tạo

Với lý thuyết Toán lớp 11 Bài 4: Phương trình, bất phương trình mũ và lôgarit chi tiết, hay nhất và bài tập tự luyện có lời giải chi tiết sách Chân trời sáng tạo sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 11.

1 1,046 26/01/2024


Lý thuyết Toán 11 Bài 4: Phương trình, bất phương trình mũ và lôgarit - Chân trời sáng tạo

A. Lý thuyết Phương trình, bất phương trình mũ và lôgarit

1. Phương trình mũ cơ bản

Phương trình mũ cơ bản có dạng ax=b(với a>0,a1).

- Nếu b > 0 thì phương trình có nghiệm duy nhất x=logab.

- Nếu b 0 thì phương trình vô nghiệm.

Chú ý: Với a>0,a1

a) ax=aαx=α.

b) Tổng quát hơn, au(x)=av(x)u(x)=v(x)

Minh họa bằng đồ thị:

Lý thuyết Phương trình, bất phương trình mũ và lôgarit (Chân trời sáng tạo 2024) hay, chi tiết | Toán lớp 11 (ảnh 1)

2. Phương trình lôgarit cơ bản

Phương trình lôgarit cơ bản có dạng logax=b(a>0,a1).

Phương trình luôn có nghiệm duy nhất x=ab.

Chú ý: Với a>0,a1

a) logau(x)=bu(x)=ab.

b) logau(x)=logav(x){u(x)>0u(x)=v(x).

Có thể thay u(x)>0 bằng v(x)>0 (chọn bất phương trình đơn giản hơn)

Minh họa bằng đồ thị:

Lý thuyết Phương trình, bất phương trình mũ và lôgarit (Chân trời sáng tạo 2024) hay, chi tiết | Toán lớp 11 (ảnh 2)

3. Bất phương trình mũ cơ bản

Bất phương trình mũ cơ bản có dạng ax>b (hoặc axb,ax<b,axb) với a>0,a1.

Bảng tổng kết về nghiệm của các bất phương trình trên:

Lý thuyết Phương trình, bất phương trình mũ và lôgarit (Chân trời sáng tạo 2024) hay, chi tiết | Toán lớp 11 (ảnh 5)

Chú ý:

Nếu a > 1 thì au(x)=av(x)u(x)>v(x).

Nếu 0 < a < 1 thì au(x)>av(x)u(x)<v(x).

4. Bất phương trình lôgarit cơ bản

Bất phương trình lôgarit cơ bản có dạng logax>b(hoặc logaxb,logax<b,logaxb) với a>0,a1.

Bảng tổng kết về nghiệm của các bất phương trình trên:

Lý thuyết Phương trình, bất phương trình mũ và lôgarit (Chân trời sáng tạo 2024) hay, chi tiết | Toán lớp 11 (ảnh 4)

Chú ý:

Nếu a > 1 thì logau(x)>logav(x){v(x)>0u(x)>v(x).

Nếu 0 < a < 1 thì logau(x)>logav(x){u(x)>0u(x)<v(x).

Sơ đồ tư duy Phương trình, bất phương trình mũ và lôgarit

Lý thuyết Phương trình, bất phương trình mũ và lôgarit (Chân trời sáng tạo 2024) hay, chi tiết | Toán lớp 11 (ảnh 6)

B. Bài tập Phương trình, bất phương trình mũ và lôgarit

Đang cập nhật ...

Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 sách Chân trời sáng tạo hay, chi tiết khác:

Lý thuyết Bài 1: Đạo hàm

Lý thuyết Bài 2: Các quy tắc tính đạo hàm

Lý thuyết Bài 1: Hai đường thẳng vuông góc

Lý thuyết Bài 2: Đường thẳng vuông góc với mặt phẳng

Lý thuyết Bài 3: Hai mặt phẳng vuông góc

1 1,046 26/01/2024


Xem thêm các chương trình khác: