Lý thuyết Hai mặt phẳng vuông góc – Toán 11 Chân trời sáng tạo
Với lý thuyết Toán lớp 11 Bài 3: Hai mặt phẳng vuông góc chi tiết, hay nhất và bài tập tự luyện có lời giải chi tiết sách Chân trời sáng tạo sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 11.
Lý thuyết Toán 11 Bài 3: Hai mặt phẳng vuông góc - Chân trời sáng tạo
A. Lý thuyết Hai mặt phẳng vuông góc
1. Góc giữa hai mặt phẳng
Góc giữa hai mặt phẳng và là góc giữa hai đường thẳng lần lượt vuông góc với và , kí hiệu .
Ta có: với .
2. Hai mặt phẳng vuông góc
Hai mặt phẳng được gọi là vuông góc với nhau nếu góc giữa hai mặt phẳng đó là một góc vuông.
Hai mặt phẳng (P) và (Q) vuông góc được kí hiệu là .
3. Điều kiện để hai mặt phẳng vuông góc
Định lí 1:
Điều kiện cần và đủ để hai mặt phẳng vuông góc là mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.
4. Tính chất cơ bản về hai mặt phẳng vuông góc
Định lí 2:
Nếu hai mặt phẳng vuông góc với nhau thì bất cứ đường thẳng nào nằm trong mặt phẳng này và vuông góc với giao tuyến cũng vuông góc với mặt phẳng kia.
Định lí 3:
Nếu hai mặt phẳng cắt nhau và cùng vuông góc với một mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng thứ ba đó.
5. Hình lăng trụ đứng, hình hộp chữ nhật, hình lập phương
Hình lăng trụ đứng là hình lăng trụ có cạnh bên vuông góc với mặt đáy.
Hình lăng trụ đều là hình lăng trụ đúng có mặt đáy là đa giác đều.
Hình hộp đứng là hình hộp có cạnh bên vuông góc với mặt đáy.
Hình hộp chữ nhật là hình hộp đứng có mặt đáy là hình chữ nhật.
Hình lập phương là hình hộp chữ nhật có tất cả các cạnh bằng nhau.
6. Hình chóp đều. Hình chóp cụt đều
a) Hình chóp đều
Hình chóp đều là hình chóp có đáy là đa giác đều và các cạnh bên bằng nhau.
Chú ý: Hình chóp đều có:
- Các mặt bên là các tam giác cân tại đỉnh hình chóp và bằng nhau.
- Đoạn thẳng nối từ đỉnh hình chóp đến tâm của đáy thì vuông góc với mặt đáy và gọi là đường cao của hình chóp.
- Độ dài đường cao gọi là chiều cao của hình chóp đều.
b) Hình chóp cụt đều
Phần của hình chóp đều nằm giữa đáy và một mặt phẳng song song với đáy cắt các cạnh bên của hình chóp đều được gọi là hình chóp cụt đều.
Trong hình chóp cụt đều , ta gọi:
- Các điểm là các đỉnh.
được gọi là một hình chóp cụt đều (nói đơn giản là hình chóp cụt được tạo thành từ hình chóp đều sau khi cắt đi chóp đều ), kí hiệu là .
- Đa giác là đáy lớn, đa giác là đáy nhỏ. Đáy lớn và đáy nhỏ nằm trên hai mặt phẳng song song.
- Cạnh của hai đa giác đáy là cạnh đáy. Các cạnh tương ứng song song từng đôi một.
- Các hình thang cân được gọi là các mặt bên.
- Cạnh bên của mặt bên gọi là cạnh bên của hình chóp cụt đều. Hình chóp cụt đều có các cạnh bên bằng nhau, các mặt bên là những hình thang cân.
- Đoạn thẳng nối tâm hai đáy là đường cao. Độ dài đường cao là chiều cao.
Sơ đồ tư duy Hai mặt phẳng vuông góc
B. Bài tập Hai mặt phẳng vuông góc
Đang cập nhật ...
Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 sách Chân trời sáng tạo hay, chi tiết khác:
Lý thuyết Bài 2: Đường thẳng vuông góc với mặt phẳng
Lý thuyết Bài 4: Khoảng cách trong không gian
Lý thuyết Bài 5: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Chân trời sáng tạo (hay nhất)
- Văn mẫu lớp 11 - Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 11 - Chân trời sáng tạo
- Giải SBT Ngữ văn 11 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 11 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Chân trời sáng tạo
- Soạn văn 11 Chân trời sáng tạo (ngắn nhất)
- Giải sgk Tiếng Anh 11 – Friends Global
- Giải sbt Tiếng Anh 11 - Friends Global
- Trọn bộ Từ vựng Tiếng Anh 11 Friends Global đầy đủ nhất
- Bài tập Tiếng Anh 11 Friends Global theo Unit có đáp án
- Giải sgk Vật lí 11 – Chân trời sáng tạo
- Lý thuyết Vật lí 11 – Chân trời sáng tạo
- Giải sbt Vật lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Vật lí 11 – Chân trời sáng tạo
- Giải sgk Hóa học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Hóa học 11 – Chân trời sáng tạo
- Lý thuyết Hóa 11 - Chân trời sáng tạo
- Giải sbt Hóa học 11 – Chân trời sáng tạo
- Giải sgk Sinh học 11 – Chân trời sáng tạo
- Lý thuyết Sinh học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Sinh học 11 – Chân trời sáng tạo
- Giải sbt Sinh học 11 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Chân trời sáng tạo
- Lý thuyết Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sbt Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sgk Lịch sử 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Lịch sử 11 – Chân trời sáng tạo
- Lý thuyết Lịch sử 11 - Chân trời sáng tạo
- Giải sbt Lịch sử 11 – Chân trời sáng tạo
- Giải sgk Địa lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Địa lí 11 – Chân trời sáng tạo
- Lý thuyết Địa lí 11 - Chân trời sáng tạo
- Giải sbt Địa lí 11 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 11 – Chân trời sáng tạo