Lý thuyết Đường thẳng vuông góc với mặt phẳng – Toán 11 Chân trời sáng tạo
Với lý thuyết Toán lớp 11 Bài 2: Đường thẳng vuông góc với mặt phẳng chi tiết, hay nhất và bài tập tự luyện có lời giải chi tiết sách Chân trời sáng tạo sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 11.
Lý thuyết Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng - Chân trời sáng tạo
A. Lý thuyết Đường thẳng vuông góc với mặt phẳng
1. Đường thẳng vuông góc với mặt phẳng
Định nghĩa: Đường thẳng d được gọi là vuông góc với mặt phẳng nếu d vuông góc với mọi đường thẳng nằm trong , kí hiệu .
Định lí 1:
Nếu một đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mặt phẳng thì .
Định lí 2:
- Có duy nhất một mặt phẳng đi qua một điểm và vuông góc với một đường thẳng cho trước.
- Có duy nhất một đường thẳng đi qua một điểm và vuông góc với một mặt phẳng cho trước.
2. Liên hệ giữa tính song song và tính vuông góc của đường thẳng và mặt phẳng
Định lí 3:
a) Cho hai đường thẳng song song. Mặt phẳng nào vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng kia.
b) Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau.
Định lí 4:
a) Cho hai mặt phẳng song song. Đường thẳng nào vuông góc với mặt phẳng này thì cũng vuông góc với mặt phẳng kia.
b) Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.
Định lí 5:
a) Cho đường thẳng a song song với mặt phẳng . Đường thẳng nào vuông góc với thì cũng vuông góc với a.
b) Nếu đường thẳng a và mặt phẳng (không chứa a) cũng vuông góc với một đường thẳng b thì chúng song song với nhau.
3. Phép chiếu vuông góc
Định nghĩa: Cho mặt phẳng (P) và đường thẳng d vuông góc với (P). Phép chiếu song song theo phương của d lên mặt phẳng (P) được gọi là phép chiếu vuông góc lên (P).
Định lí ba đường vuông góc
Cho đường thẳng a nằm trong mặt phẳng (P) và b là đường thẳng không nằm trong (P) và không vuông góc với (P). Gọi b’ là hình chiếu vuông góc của b trên (P). Khi đó a vuông góc với b khi và chỉ khi a vuông góc với b’.
Sơ đồ tư duy Đường thẳng vuông góc với mặt phẳng
B. Bài tập Đường thẳng vuông góc với mặt phẳng
Đang cập nhật ...
Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 sách Chân trời sáng tạo hay, chi tiết khác:
Lý thuyết Bài 3: Hai mặt phẳng vuông góc
Lý thuyết Bài 4: Khoảng cách trong không gian
Lý thuyết Bài 5: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Chân trời sáng tạo (hay nhất)
- Văn mẫu lớp 11 - Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 11 - Chân trời sáng tạo
- Giải SBT Ngữ văn 11 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 11 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Chân trời sáng tạo
- Soạn văn 11 Chân trời sáng tạo (ngắn nhất)
- Giải sgk Tiếng Anh 11 – Friends Global
- Giải sbt Tiếng Anh 11 - Friends Global
- Trọn bộ Từ vựng Tiếng Anh 11 Friends Global đầy đủ nhất
- Bài tập Tiếng Anh 11 Friends Global theo Unit có đáp án
- Giải sgk Vật lí 11 – Chân trời sáng tạo
- Lý thuyết Vật lí 11 – Chân trời sáng tạo
- Giải sbt Vật lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Vật lí 11 – Chân trời sáng tạo
- Giải sgk Hóa học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Hóa học 11 – Chân trời sáng tạo
- Lý thuyết Hóa 11 - Chân trời sáng tạo
- Giải sbt Hóa học 11 – Chân trời sáng tạo
- Giải sgk Sinh học 11 – Chân trời sáng tạo
- Lý thuyết Sinh học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Sinh học 11 – Chân trời sáng tạo
- Giải sbt Sinh học 11 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Chân trời sáng tạo
- Lý thuyết Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sbt Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sgk Lịch sử 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Lịch sử 11 – Chân trời sáng tạo
- Lý thuyết Lịch sử 11 - Chân trời sáng tạo
- Giải sbt Lịch sử 11 – Chân trời sáng tạo
- Giải sgk Địa lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Địa lí 11 – Chân trời sáng tạo
- Lý thuyết Địa lí 11 - Chân trời sáng tạo
- Giải sbt Địa lí 11 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 11 – Chân trời sáng tạo