Lý thuyết Phép tính lôgarit – Toán 11 Cánh diều

Với lý thuyết Toán lớp 11 Bài 2: Phép tính lôgarit chi tiết, hay nhất và bài tập tự luyện có lời giải chi tiết sách Cánh diều sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 11.

1 1,250 26/01/2024


Lý thuyết Toán 11 Bài 2: Phép tính lôgarit - Cánh diều

A. Lý thuyết Phép tính lôgarit

1. Khái niệm lôgarit

a) Định nghĩa

Với a > 0, a 1 và b > 0, ta có: c=logabac=b. Ngoài ra:

- Lôgarit thập phân của b là lôgarit cơ số 10 của số thực dương b:

c=logb10c=b

- Lôgarit tự nhiên của b là lôgarit cơ số e của số thực dương b:

c=lnbec=b.

b) Tính chất

Với a > 0, a 1 và b > 0, ta có:

loga1=0; logaa=1; logaac=c; alogab=b.

2. Một số tính chất của phép tính lôgarit

Trong mục này, ta xét a > 0, a 1 và b > 0.

a) Lôgarit của một tích, một thương

Với m > 0, n > 0, ta có:

  • loga(mn)=logam+logan;
  • loga(mn)=logamlogan.

Nhận xét: loga(1b)=logab.

b) Lôgarit của một lũy thừa

Với mọi số thực α, ta có: logabα=αlogab.

Nhận xét: Với mọi số nguyên dương n2, ta có: logabn=1nlogab.

c) Đổi cơ số của lôgarit

Với a, b là hai số thực dương khác 1 và c là số thực dương, ta có: logbc=logaclogab.

Nhận xét: Với a, b là hai số thực dương khác 1, c > 0 và α0, ta có những công thức sau:

  • logab.logbc=logac;
  • logab=1logba;
  • logaαb=1αlogab.

Sơ đồ tư duy Phép tính lôgarit

Lý thuyết Phép tính lôgarit (Cánh diều 2024) hay, chi tiết | Toán lớp 11 (ảnh 1)

B. Bài tập Phép tính lôgarit

Đang cập nhật ...

Xem thêm các bài tóm tắt lý thuyết Toán 11 sách Cánh diều hay, chi tiết khác:

Lý thuyết Bài 3: Hàm số mũ. Hàm số lôgarit

Lý thuyết Bài 4: Phương trình mũ, bất phương trình mũ và lôgarit

Lý thuyết Bài 1: Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm

Lý thuyết Bài 2: Các quy tắc tính đạo hàm

Lý thuyết Bài 3: Đạo hàm cấp hai

1 1,250 26/01/2024


Xem thêm các chương trình khác: