Lý thuyết Giới hạn của dãy số – Toán 11 Cánh diều

Với lý thuyết Toán lớp 11 Bài 1: Giới hạn của dãy số chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Cánh diều sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 11.

1 1,898 30/10/2023


Lý thuyết Toán 11 Bài 1: Giới hạn của dãy số - Cánh diều

Bài giảng Toán 11 Bài 1: Giới hạn của dãy số

A. Lý thuyết Giới hạn của dãy số

1. Giới hạn hữu hạn của dãy số

- Dãy số (un) có giới hạn 0 khi n dần tới dương vô cực, nếu |un| có thể nhỏ hơn một số dương bé tùy ý , kể tử một số hạng nào đó trở đi.

Kí hiệu limn+un=0 hay un0 khi n+ hay limun=0.

- Dãy số (un)có giới hạn là số thực a khi n dần tới dương vô cực, nếu limn+(una)=0, kí hiệu limn+un=ahay una khi n+hay limun=a.

* Chú ý: Nếu un=c (c là hằng số) thì limn+un=c

2. Một số giới hạn cơ bản

+ lim1n=0,lim1nk=0,kZ.

+ limcn=0,limcnk=0,kZ, c là hằng số.

+ Nếu |q|<1 thì limqn=0

+ lim(1+1n)n=e

3. Định lí về giới hạn hữu hạn của dãy số

a, Nếu limn+un=a,limn+vn=b thì

limn+(un±vn)=a±b

limn+(un.vn)=a.b

limn+(unvn)=ab(b0)

b, Nếu un0 thì với mọi n và limn+un=a thì a0limn+un=a.

3. Tổng của cấp số nhân lùi vô hạn

Cấp số nhân lùi vô hạn u1,u1q,...,u1qn1,... có công bội q thỏa mãn |q|<1 được gọi là cấp số nhân lùi vô hạn.

Tổng của cấp số nhân lùi vô hạn là:

S=u11q(|q|<1)

4. Giới hạn vô cực

- Dãy số (un) được gọi là có giới hạn +khi n+ nếu un có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi, kí hiệu limx+un=+ hay un+ khi n+.

- Dãy số (un) được gọi là có giới hạn khi n+ nếu limx+(un)=+, kí hiệu limx+un= hay un khi n+.

*Nhận xét:

  • limnk=+,kZ+limqn=+;qR,q>1.
  • Nếu limx+un=alimx+vn=+(hoặclimx+vn=) thì limn+(unvn)=0.
  • Nếu limx+un=a>0limx+vn=0,n thì limn+(unvn)=+.
  • limn+(unvn)=+.
  • Nếu limx+un=+limn+(un)=
Lý thuyết Giới hạn của dãy số – Toán 11 Cánh diều (ảnh 1)

B. Bài tập Giới hạn của dãy số

Đang cập nhật ...

Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 sách Cánh diều hay, chi tiết khác:

Lý thuyết Bài 2: Giới hạn của hàm số

Lý thuyết Bài 3: Hàm số liên tục

Lý thuyết Bài 1: Đường thẳng và mặt phẳng trong không gian

Lý thuyết Bài 2: Hai đường thẳng song song trong không gian

Lý thuyết Bài 3: Đường thẳng và mặt phẳng song song

1 1,898 30/10/2023


Xem thêm các chương trình khác: