25 đề thi thử THPT Quốc gia môn Toán năm 2022 có lời giải (đề 22)

  • 7702 lượt thi

  • 50 câu hỏi

  • 90 phút

Danh sách câu hỏi

Câu 1:

14/07/2024

Tập xác định của hàm số log2x 

Xem đáp án

Đáp án C

Hàm số y=log2x xác định khi x > 0 Þ Tập xác định của hàm số y=log2x 0;+.


Câu 2:

14/07/2024

Môđun của số phức z=43i bằng

Xem đáp án

Đáp án D

Ta có z=42+32=5.


Câu 3:

16/07/2024

Mặt cầu bán kính R có diện tích là

Xem đáp án

Đáp án D

Mặt cầu bán kính R thì có diện tích S=4πR2.


Câu 4:

14/07/2024

Ba số nào sau đây tạo thành một cấp số nhân?

Xem đáp án

Đáp án B

Xét thương số lần lượt từng đáp án:

Đáp án A: 2142. Suy ra dãy số này không phải là cấp số nhân.

Đáp án B: 21=42=2=q. Suy ra dãy số này là cấp số nhân.

Đáp án C: 2142. Suy ra dãy số này không phải là cấp số nhân.

Đáp án D: 2142. Suy ra dãy số này không phải là cấp số nhân.


Câu 5:

23/07/2024

Trong không gian Oxyz, cho mặt cầu S:x12+y+12+z22=9. Tọa độ tâm I và bán kính R của (S) lần lượt là

Xem đáp án

Đáp án B

Ta có tâm và bán kính mặt cầu là I1;1;2, R=9=3.


Câu 6:

18/07/2024

Trong không gian Oxyz, cho hai điểm A(-1;2;3), B(-3;2;-1). Tọa độ trung điểm của AB

Xem đáp án

Đáp án A

Tọa độ trung điểm của ABI132;2+22;312=2;2;1.


Câu 7:

14/07/2024

Hàm số nào sau đây là một nguyên hàm của hàm số y = sinx?

Xem đáp án

Đáp án A

Ta có sinxdx=cosx+C.


Câu 8:

15/07/2024

Phần ảo của số phức z=1+i 

Xem đáp án

Đáp án B

Ta có: z=1+i Þ Phần thực của z là 1


Câu 9:

14/07/2024

Cho tập hợp Xn phần tử n, số hoán vị n phần tử của tập hợp X là

Xem đáp án

Đáp án A

Số hoán vị n phần tử của tập hợp X là: n!.


Câu 10:

20/07/2024

Cho hàm số y=fx có bảng biến thiên được cho ở hình dưới đây

Cho hàm số y = f(x) có bảng biến thiên được cho ở hình dưới đây Hỏi hàm số đã cho đồng biến trên khoảng nào dưới đây (ảnh 1)

Hỏi hàm số đã cho đồng biến trên khoảng nào dưới đây?

Xem đáp án

Đáp án A

Từ bảng biến thiên ta có hàm số đồng biến trên các khoảng (-2;0) và 2;+. Chỉ có đáp án A thỏa mãn.


Câu 11:

14/07/2024

Cho hàm số y=fx có bảng xét dấu đạo hàm được cho ở hình dưới

Cho hàm số y = f(x) có bảng xét dấu đạo hàm được cho ở hình dưới Hỏi hàm số đã cho có bao nhiêu điểm cực trị (ảnh 1)

Hỏi hàm số đã cho có bao nhiêu điểm cực trị?

Xem đáp án

Đáp án B

Từ bảng xét dấu ta thấy đạo hàm của hàm số đổi dấu hai lần khi đi qua x = 1 và x = 3 do đó hàm số có hai điểm cực trị.


Câu 12:

23/10/2024

Hình chóp tam giác có số cạnh là

Xem đáp án

Đáp án đúng: C

*Phương pháp giải:

-  dựa vào lý thuyết của hình chóp tam giác để suy ra số cạnh (cạnh bên & cạnh đáy)

*Lời giải:

Số cạnh của một hình chóp bằng hai lần số cạnh đáy của hình chóp đó

Vậy số cạnh của hình chóp tam giác: 6 ( 3 cạnh bên và 3 cạnh đáy(đáy là tam giác))

*Lý thuyết cần nắm và diện tích xung quanh, thể tích của hình chóp tam giác, hình chóp tứ giác:

Lý thuyết Hình chóp tam giác đều (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8 (ảnh 1)

Hình chóp tam giác đều có:

- Đáy là tam giác đều.

- 3 cạnh bên bằng nhau.

- 3 mặt bên là các tam giác cân bằng nhau và có chung một đỉnh.

- 3 cạnh đáy bằng nhau là ba cạnh của tam giác đáy.

- Chân đường cao kẻ từ đỉnh tới mặt đáy là điểm cách đều các đỉnh của tam giác đáy.

a. Diện tích xung quanh của hình chóp tam giác đều

Lý thuyết Hình chóp tam giác đều (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8 (ảnh 2)

Diện tích xung quanh, kí hiệu là Sxq của hình chóp tam giác đều được tính theo công thức:

Sxq=p.d,

trong đó p là nửa chu vi đáy, d là trung đoạn.

b. Thể tích của hình chóp tam giác đều

Lý thuyết Hình chóp tam giác đều (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8 (ảnh 3)

Thể tích của hình chóp tam giác đều bằng 13 diện tích đáy nhân với chiều cao.

V=13S.h

trong đó V là thể tích,

S là diện tích đáy,

h là chiều cao.

Lý thuyết Hình chóp tứ giác đều (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8 (ảnh 1)

Hình chóp tứ giác đều có:

- Đáy là hình vuông.

- 4 cạnh bên bằng nhau.

- 4 mặt bên là các tam giác cân bằng nhau và có chung một đỉnh.

- 4 cạnh đáy bằng nhau là bốn cạnh của hình vuông đáy.

- Chân đường cao kẻ từ đỉnh tới mặt đáy là điểm cách đều các đỉnh của mặt đáy (giao điểm hai đường chéo)

a. Diện tích xung quanh của hình chóp tứ giác đều

Lý thuyết Hình chóp tứ giác đều (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8 (ảnh 2)

Diện tích xung quanh, kí hiệu là Sxq của hình chóp tứ giác đều được tính theo công thức:

Sxq=p.d,

trong đó p là nửa chu vi đáy,

d là trung đoạn.

b. Thể tích của hình chóp tứ giác đều

Lý thuyết Hình chóp tứ giác đều (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8 (ảnh 3)

Thể tích của hình chóp tam giác đều (hình chóp tứ giác đều) bằng 13 diện tích đáy nhân với chiều cao.

V=13S.h

trong đó V là thể tích,

S là diện tích đáy,

h là chiều cao.

Xem thêm các bài viết liên quan hay, chi tiết:

Lý thuyết Hình chóp tam giác đều – Toán lớp 8 Kết nối tri thức

TOP 40 câu Trắc nghiệm Hình chóp đều và hình chóp cụt đều (có đáp án 2023) - Toán 8

Trắc nghiệm: Bài toán thực tiễn liên quan đến thể tích, diện tích xung quanh của hình chóp tứ giác đều


Câu 13:

19/07/2024

Hàm số nào sau đây đồng biến trên khoảng ;+?

Xem đáp án

Đáp án D

Hàm số mũ y=ax,0<a1 đồng biến khi và chỉ khi a > 1.


Câu 14:

22/07/2024

Đường tiệm cận đứng của đồ thị hàm số y=x+1x2 có phương trình là

Xem đáp án

Đáp án D

Ta có limx2x+1x2=, limx2+x+1x2=+.

Vậy x = 2 là tiệm cận đứng của đồ thị hàm số đã cho


Câu 15:

22/07/2024

Đồ thị hàm số y=x33x2 cắt trục tung tại điểm có tọa độ là

Xem đáp án

Đáp án C

Ta có y0=2 nên tọa độ giao điểm của đồ thị hàm số và trục tung là (0;-2)


Câu 16:

22/07/2024

Cho khối chóp S.ABCSAABC, tam giác ABC vuông cân tại B, SA = AB = 6.Thể tích khối chóp S.ABC bằng

Xem đáp án

Đáp án C

Theo đề bài ta có AB=BC=6.

Ta có: VS.ABC=12SΔABC.SA=13.12AB.BC.SA=16.6.6.6=36.


Câu 17:

14/07/2024

Trong không gian Oxyz, cho mặt phẳng α:2x3yz+5=0. Phương trình nào sau đây là phương trình đường thẳng song song với α?

Xem đáp án

Đáp án B

Ta thấy 2.13.11.1=0 (hai phương án A, D không thỏa mãn điều này) suy ra chỉ có thể là B hoặc C. Ta có điểm M1;1;0α. Suy ra đáp án B


Câu 18:

22/07/2024

Tích phân 12e2xdx bằng

Xem đáp án

Đáp án D

Ta có: 12e2xdx=1212e2xd2x=12e2x12=e4e22.


Câu 19:

15/07/2024

Cho hình (H) trong hình vẽ bên dưới quay quanh trục Ox tạo thành một khối tròn xoay có thể tích bằng bao nhiêu?

Cho hình (H) trong hình vẽ bên dưới quay quanh trục Ox tạo thành một khối tròn xoay có thể tích bằng bao nhiêu (ảnh 1)

Xem đáp án

Đáp án D

Thể tích khối tròn xoay tạo thành khi xoay hình (H) quanh trục Ox

V=π0πsinx2dx=π0π1cos2x2dx=π0π1cos2x2dx=π2x12sin2x0π=π22


Câu 20:

18/07/2024

Phương trình log2x=log2x+2 có bao nhiêu nghiệm?

Xem đáp án

Đáp án C

Điều kiện: x>0x+2>0x>0x>2x>0.

Ta có: log2x=log2x+2log2x2=log2x+2x2=x+2x2x2=0x=1x=2.


Câu 21:

23/07/2024

Họ nguyên hàm của hàm số y=2x+12019 

Xem đáp án

Đáp án A

Ta có: I=2x+12019dx=122x+12019d2x+1=12.2x+120202020+C=2x+120204040+C.


Câu 22:

14/07/2024

Trong không gian Oxyz, cho đường thẳng d:x12=y3=z+11. Phương trình nào dưới đây là phương trình của đường thẳng vuông góc với d?

Xem đáp án

Đáp án B

Ta thấy vectơ chỉ phương của đường thẳng d ud=2;3;1.

Vectơ của đường thẳng Δ:x2=y1=z+21 uΔ=2;1;1. Do đó ud.uΔ=0 nên dΔ.


Câu 23:

18/07/2024

Cho m, n, p là các số thực thỏa mãn plog2=mlog4+nlog8, mệnh đề nào dưới đây đúng

Xem đáp án

Đáp án C

Ta có: plog2=mlog4+nlog8log2p=log4m+log8n

2p=4m.8n2p=22m.23np=2m+3n


Câu 24:

14/07/2024

Cho hàm số y=ax4+bx2+c có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?

Cho hàm số y = ax^4 + bx^2 + c có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng (ảnh 1)

Xem đáp án

Đáp án B

Dựa vào hình dạng đồ thị suy ra a < 0.

Hàm số có 3 điểm cực trị nên ab < 0 Þ b > 0.

Giao điểm với trục tung nằm dưới trục hoành nên c < 0


Câu 25:

15/07/2024

Hàm số y = f(x) có đạo hàm thỏa mãn f'x0 x1;4; f'x=0x2;3. Mệnh đề nào dưới đây sai

Xem đáp án

Đáp án D


Câu 26:

21/07/2024

Cho khối trụ có bán kính đáy bằng 3, thiết diện qua trục có chu vi bằng 20: Thể tích của khối trụ đã cho bằng

Xem đáp án

Đáp án D

Gọi h là chiều cao của khối trụ đã cho.

Vì thiết diện qua trục là hình chữ nhật nên h+3.2.2=20h+6=10h=4.

Vậy thể tích của khối trụ đã cho là V=S.h=πR2h=π.9.4=36π.


Câu 28:

16/07/2024

Đường cong ở hình vẽ bên dưới là đồ thị của hàm số nào dưới đây?

Đường cong ở hình vẽ bên dưới là đồ thị của hàm số nào dưới đây (ảnh 1)

Xem đáp án

Đáp án C

Quan sát đồ thị ta thấy đồ thị hàm số đi qua điểm cố định (1;1) và là hàm số nghịch biến. Do đó ta loại đáp án A, B.

Mặt khác, hàm số có tập xác định là 0;+ nên ta chọn đáp án C.


Câu 30:

14/07/2024

Gọi z1 là nghiệm phức có phần ảo âm của phương trình z2+2z+5=0. Trên mặt phẳng tọa độ, điểm biểu diễn z1 có tọa độ là

Xem đáp án

Đáp án B

Ta có z2+2z+5=0z+12=4i2z=1+2iz=12i.

Theo đề bài, ta có z1=12i. Vậy điểm biểu diễn z1 có tọa độ là (-1;-2).


Câu 31:

20/07/2024

Gọi z là số phức có môđun nhỏ nhất và thỏa mãn z+1+i=z¯+i. Tổng phần thực và phần ảo của số phức z bằng

Xem đáp án

Đáp án C

Giả sử z=a+bi với a,b.

Từ z+1+i=z¯+i ta được a+12+b+12=a2+1b2.

a2+2x+b2+2b+2=a2+b22b+1a=14b2

z=a2+b2=1+4b24+b2=20b2+8b+12

Hàm số y=20b2+8b+1 đạt giá trị nhỉ nhất tại b=840=15a=110.

Vậy a+b=310.


Câu 32:

23/07/2024

Tổng tất cả các nghiệm của phương trình 2x22x1.3x22x=18 bằng

Xem đáp án

Đáp án A

2x22x1.3x22x=182x22x.21.3x22x=186x22x=36x22x=2x22x2=0

Phương trình này có a.c=2<0 nên luôn có hai nghiệm trái dấu và tổng hai nghiệm bằng ba=2.


Câu 33:

19/07/2024

Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y=x4mx2 đồng biến trên khoảng 2;+?

Xem đáp án

Đáp án B

TXĐ: D=.

Ta có: y'=4x32mx.

Hàm số đồng biến trên 2;+y'0, x2;+

4x22mx0, x2;+m2x2, x2;+ *

Xét gx=2x2 trên 2;+.

Ta có g'x=4x>0,x2;+gx đồng biến trên 2;+gxg2, x2;+.

*mminx2;+gx=g2m8

Do m là số nguyên dương nên m1;2;3;4;5;6;7;8.


Câu 34:

17/07/2024

Thiết diện qua trục của một hình nón là một tam giác vuông có diện tích bằng 22. Diện tích toàn phần của hình nón bằng

Xem đáp án

Đáp án C

Thiết diện qua trục của một hình nón là một tam giác vuông có diện tích bằng 2 căn 2. Diện tích toàn phần của hình nón bằng (ảnh 1)

Theo đề bài ta có ΔSAB vuông cân tại S nên

SΔSAB=12SA2=22SA=42=l

AB=SA2=82r=OA=AB2=22.

Diện tích toàn phần của hình nón: Stp=πrl+πr2=π4+22.


Câu 35:

16/07/2024

Số giá trị nguyên của tham số m để hàm số y=logx22xm+3+2019 xác định với mọi x 

Xem đáp án

Đáp án C

Điều kiện: m3.

Hàm số xác định trên x22xm+3+2019>0, x.

a>0Δ'01>0m+320190m2016.

Kết hợp m nên suy ra m3;2;...;2016.

Vậy có 2020 số nguyên m thỏa mãn yêu cầu bài toán.


Câu 36:

14/07/2024

Một người thả một lượng bèo chiếm 2% diện tích mặt hồ. Giả sử tỉ lệ tăng trưởng của bèo hàng ngày là 20%. Hỏi sau ít nhất bao nhiêu ngày thì bèo phủ kín mặt hồ

Xem đáp án

Đáp án A

Gọi S là diện tích mặt hồ Þ Lượng bèo ban đầu trên mặt hồ sẽ là A=0,02S.

Sau n ngày thì lượng bèo tăng trưởng phủ kín mặt hồ nên

0,02S.1+0,2n=Sn=log1,210,0221,4567

Vậy ít nhất 22 ngày thì bèo phủ kín mặt h


Câu 37:

16/07/2024

Cho hình chóp S.ABCD có đáy là hình thang cân, SAABCD,AD=2BC=2AB. Trong tất cả các tam giác mà 3 đỉnh lấy từ 5 điểm S, A, B, C, D có bao nhiêu tam giác vuông?

Xem đáp án

Đáp án D

Cho hình chóp S.ABCD có đáy là hình thang cân, SA vuông góc (ABCD), AD = 2BC = 2AB. Trong tất cả các tam giác mà 3 (ảnh 1)

Dễ thấy hình thang ABCD có ACDC; ABBD.

DBSABDCSACΔSCD vuông tại CΔSBD vuông tại B

SAABCDΔSAD; ΔSAB; ΔSAC vuông tại A.

Mặt khác ΔADC vuông tại C; ΔABD vuông tại B.

Þ Có 7 tam giác vuông.


Câu 38:

22/07/2024

Trong không gian Oxyz, cho hai đường thẳng d1:x31=y32=z+21, d2:x53=y+12=z21 và mặt phẳng P:x+2y+3z5=0. Đường thẳng vuông góc với P, cắt cả d1 d2 có phương trình là:

Xem đáp án

Đáp án C

Đường thẳng vuông góc với mặt phẳng (P) Þ Loại A.

Gọi vectơ chỉ phương của đường thẳng d1 d2 lần lượt là u1 u2.

M13;3;2,M25;1;2,MB2;3;1,MC1;1;0,MD3;3;2 lần lượt là các điểm thuộc các đường thẳng d1,d2,dB,dC,dD.

Xét sự đồng phẳng, cắt nhau của các đường thẳng trong phương án B, C, D với d1 d2 ta có phương án C thỏa mãn cắt cả d1 d2.


Câu 39:

14/07/2024

Cho các số phức z1,z2,z3 thỏa mãn z1=z2=z3=1 z13+z23+z33+z1z2z3=0. Đặt z=z1+z2+z3, giá trị của z33z2 bằng

Xem đáp án

Đáp án A

Do giả thiết đã cho đúng với mọi cặp số phức z1,z2,z3 nên ta chọn z1=z2=1, kết hợp giả thiết ta có: z13+z23+z33+z1z2z3=01+1+z33+z3=0z33+z3+2=0z3=1, thỏa mãn z3=1.

Khi đó ta có 1 cặp z1,z2,z2=1;1;1 thỏa mãn yêu cầu của bài toán.

Khi đó: z=z1+z2+z3=1+11=1z33z2=13.2=2.


Câu 40:

21/07/2024

Cho hàm số y=fx liên tục trên và có đồ thị như hình vẽ bên

Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ bên Tập hợp nghiệm của phườn trình f(f(x)) + 1 = 0 có bao nhiêu phần tử (ảnh 1)

Tập hợp nghiệm của phườn trình ffx+1=0 có bao nhiêu phần tử?

Xem đáp án

Đáp án C

Đặt t=fxffx+1=0ft+1=0ft=1

t=a<2t=b2;1t=0t=c2;3fx=a<2         1fx=b2;1   2fx=0                 3fx=c2;3     4

Dựa vào đồ thị Þ phương trình (1) có 2 nghiệm phân biệt.

Phương trình (2) có 4 nghiệm phân biệt.

Phương trình (3) có 3 nghiệm phân biệt.

Phương trình (4) vô nghiệm.

Tổng số phần tử trong tập nghiệm của phương trình là 9


Câu 41:

22/07/2024

Biết rằng giá trị lớn nhất của hàm số y=x2+2x+m4 trên đoạn [-2;1] đạt giá trị nhỏ nhất, giá trị của tham số m bằng

Xem đáp án

Đáp án B

Đặt fx=x2+2x.

Ta có: f'x=2x+2; f'x=0x=12;1.

Ta lại có: f2=0; f1=3; f1=1

Do đó max2;1fx=3; min2;1fx=1.

Suy ra: max2;1y=maxm5;m1m5+m125m+m12=2

Dấu “=” xảy ra m5=m1m5m10m=3 (thỏa mãn).


Câu 42:

13/07/2024

Cho hàm số y=fx xác định trên R và hàm số y=f'x đồ thị như hình vẽ. Tìm số điểm cực trị của hàm số y=fx23.

Cho hàm số y = f(x) xác định trên R và hàm số y = f'(x) đồ thị như hình vẽ. Tìm số điểm cực trị của hàm số y = f(x^2 - 3) (ảnh 1)

Xem đáp án

Đáp án D

Quan sát đồ thị ta có y=f'x đổi dấu từ âm sang dương qua x=2 nên hàm số y=fx có một điểm cực trị là x = -2.

Ta có: y'=fx23'=2x.f'x23=0x=0x23=2x23=1x=0x=±1x=±2

x=±2 là nghiệm kép, còn các nghiệm còn lại là nghiệm đơn nên hàm số y=fx23 có ba cực trị.


Câu 43:

14/07/2024

Lớp 12A trường THPT X có 35 học sinh đều sinh năm 2001 là năm có 365 ngày. Xác suất để có ít nhất 2 bạn trong lớp có cùng ngày sinh nhật (cùng ngày, cùng tháng) gần nhất số nào sau đây?

Xem đáp án

Đáp án D

Ω=36535.

Gọi A là biến cố: “ít nhất 2 bạn trong lớp có cùng ngày sinh nhật”.

A¯ là biến cố: “không có bạn trong lớp có cùng ngày sinh nhật”.

ΩA¯=A36535PA¯=A3653536535PA=1PA¯0,814


Câu 44:

14/07/2024

Trong không gian Oxyz, cho mặt cầu S:x2+y2+z2+2x8y+9=0 và hai điểm A(5;10;0), B(4;2;1). Gọi M là điểm thuộc mặt cầu (S). Giá trị nhỏ nhất của MA + 3MB bằng

Xem đáp án

Đáp án D

Gọi Mx;y;zS

MA+3MB=x52+y102+z2+3x42+y22+z12

=3x+122+y1432+z289x2+y2+z2+2x8y+9+3x42+y22+z12

=3x+122+y1432+z2+x42+yz2+z12

4+132+21432+12=1123


Câu 45:

14/07/2024

Xét các số tự nhiên gồm 5 chữ số khác nhau được lập từ các số 1, 3, 5, 7, 9. Tính xác suất để tìm được một số không bắt đầu bởi 135.

Xem đáp án

Đáp án A

Số phần tử không gian mẫu là: nΩ=5!.

Gọi A là biến cố “số tìm được không bắt đầu bởi 135”.

Thì biến cố A¯ là biến cố “số tìm được bắt đầu bởi 135”.

Buộc các số 135 lại thì ta còn 3 phần tử. Số các số tạo thành thỏa mãn số 135 đứng đầu là 1.2.1 = 2 cách nA=1202=118 cách.

Nên PA=nAnΩ=118120=5960.


Câu 46:

13/07/2024

Cho khối lăng trụ ABC.A'B'C' có thể tích V, trên các cạnh AA', BB', CC' lần lượt lấy các điểm M, N, P sao cho AM=12AA', BN=23BB', CP=16CC'. Tính thể tích khối đa diện ABC'MNP?

Xem đáp án

Đáp án A

Ta có: VABCMNP=VN.ACB+VN.ACPM.

VN.ACB=BNBB'.VB'ACB=BNBB'.13VABCA'B'C'

VNACPMVB'ACC'A'=SACPMSACC'A'=12CP+AMAA'=12CPCC'+AMAA'

VNACPM=12CPCC'+AMAA'.23VABCA'B'C'

Suy ra: VABCMNP=13AMAA'+CPCC'+BNBB'.VABCA'B'C'

Vậy VABCMNP=12+23+163.V=4V9.


Câu 47:

23/07/2024

Cho hàm số có đạo hàm liên tục trên khoảng 1;+ và thỏa mãn xf'x2fxlnx=x3fx, x1;+; biết fe3=3e. Giá trị f(2) thuộc khoảng nào dưới đây?

 

Xem đáp án

Đáp án C

x1;+ nên ta có x2f'x2xfxlnx=x4xfx.

x2f'x2xfxx4lnx=1fxx3

fxx2'lnx=1fxx3fxx2'lnxdx=1fxx3dx

fxlnxx2fxx3dx=xfxx3dx+C

fxlnxx2=x+Cfxlnxx2=x+Cfx=x2x+Clnx

Theo đề bài fe3=3eC=0fx=x3lnxf2=8ln2232;12.


Câu 48:

14/07/2024

Trong không gian Oxyz, cho ba điểm A1;0;0, B0;1;0, C0;0;1, và mặt phẳng P:2x2y+z+7=0. Xét MP, giá trị nhỏ nhất của MAMB+MC+MB bằng?

Xem đáp án

Đáp án B

Gọi I là điểm thỏa mãn IAIB+IC=0I1;1;1.

Ta có: MAMB+MC+MB=MI+IAMIIB+MI+IC+MB=MI+MB=MI+MB

Xét thấy BI nằm cùng phía so với mặt phẳng P:2x2y+z+7=0.

Gọi B' là điểm đối xứng của B qua mặt phẳng.

Phương trình đường thẳng (d) qua B0;1;0 và có vectơ chỉ phương ud=2;2;1 là d:x=2ty=12tz=t.

Gọi H là giao điểm của (d) PH2;1;1.

Ta có H là trung điểm của BB'B'4;3;2.

Ta có MI+MB=MI+MB'IB'.

Vậy MAMB+MC+MBmin=IB'=22.


Câu 49:

14/07/2024

Cho các số thực a, b, c thỏa mãn 2a=6b=12c a12+b12+c12=2.

Tổng a+b+c bằng?

Xem đáp án

Đáp án C

Đặt 2a=6b=12c=t t>0.

Ta có a=log2t, b=log6t, c=log12t.

TH1: Nếu t=1a=b=c=0, không thỏa mãn a12+b12+c12=2.

TH2: Nếu t1. Khi đó 1a=logt2, 1b=logt6, 1c=logt12.

Suy ra: 1a+1b+1c=0ab+bc+ca=0.

Mặt khác ta có a12+b12+c12=2.

a+b+c22a+b+c+12ab+bc+ca=0a+b+c12=0

a+b+c=1


Câu 50:

14/07/2024

Tổng giá trị lớn nhất và nhỏ nhất của biểu thức F=x+yzx+y+z bằng bao nhiêu, biết rằng x, y, z là các số thực thỏa mãn log16x+y+z2x2+2y2+2z2+1=xx2+yy2+zz2.

Xem đáp án

Đáp án B

Ta có: log16x+y+z2x2+2y2+2z2+1=xx2+yy2+zz2

log16x+y+z+2x+y+z=log162x2+2y2+2z2+1+2x2+2y2+2z2+1

log44x+y+z+4x+y+z=log42x2+2y2+2z2+1+2x2+2y2+2z2+1

Xét hàm số: ft=log4t+t t>0.

Hàm số luôn đồng biến trên tập xác định.

Suy ra: f4x+y+z=f2x2+2y2+2z2+1

4x+y+z=2x2+2y2+2z2+1x2+y2+z22x2y2z+12=0 S

Ta có mặt cầu (S) có tọa độ tâm và bán kính là: I1;1;1, R=102.

Ta có: F=x+yzx+y+zF1x+F1y+F+1z=0 P.

Mặt phẳng (P) và mặt cầu (S) có điểm chung điều kiện cần và đủ là

dI,PRF1+F1+F+12F12+F+12102

3F22F13012103F1+2103

Tổng giá trị lớn nhất và nhỏ nhất của biểu thức F=x+yzx+y+z bằng 23.


Bắt đầu thi ngay