Hình 13 mô tả sơ đồ một sân khấu gắn với hệ trục tọa độ Oxy (đơn vị trên các trục tọa độ

Lời giải Bài 30 trang 33 SBT Toán 10 Tập 1 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.

1 352 05/12/2022


Giải SBT Toán 10 Cánh diều Bài ôn tập chương 2

Bài 30 trang 33 SBT Toán 10 Tập 1: Hình 13 mô tả sơ đồ một sân khấu gắn với hệ trục tọa độ Oxy (đơn vị trên các trục tọa độ là 1 mét). Phần thính phòng giới hạn bởi hai đường thẳng d1 và d2 là vị trí ngồi của khán giả có thể nhìn thấy dàn hợp xướng. Gọi (x; y) là tọa độ ngồi của khán giả ở thính phòng. Viết hệ bất phương trình bậc nhất hai ẩn x, y mà khán giả có thể nhìn thấy dàn hợp xướng.

Sách bài tập Toán 10 Bài ôn tập chương 2 - Cánh diều (ảnh 1)

Lời giải:

Ta có hình vẽ sau:

Sách bài tập Toán 10 Bài ôn tập chương 2 - Cánh diều (ảnh 1)

Phần chỗ ngồi của khán giả được giới hạn bởi các đường thẳng d1, d2, d và d’ chính là miền tứ giác ABCD.

Đường thẳng d đi qua điểm (0; 22) và song song với trục Ox nên có phương trình là y = 22.

Miền nghiệm nằm ở bên dưới nên ta có bất phương trình y ≤ 22.

Đường thẳng d’ đi qua điểm (0; 9) và song song với trục Ox nên có phương trình là y = 9.

Miền nghiệm nằm ở bên trên đường thẳng d’ nên ta có bất phương trình y ≥ 9.

Đường thẳng d1 có phương trình y = ax + b đi qua hai điểm (– 12; 0) và (– 8; – 8) nên ta thay lần lượt tọa độ hai điểm này vào y = ax + b ta được hệ:

12a+b=08a+b=8a=2b=24

d1: y = – 2x – 24 2x + y = – 24.

Lấy điểm có tọa độ (0; 12) có 2.0 + 12 = 12 > – 24 thuộc miền nghiệm ABCD nên ta có bất phương trình 2x + y > – 24.

Đường thẳng d2 có phương trình y = ax + b đi qua hai điểm (12; 0) và (8; – 8) nên ta thay lần lượt tọa độ hai điểm này vào y = ax + b ta được hệ:

12a+b=08a+b=8a=2b=24

d1: y = 2x – 24 2x – y = 24.

Lấy điểm có tọa độ (0; 12) có 2.0 – 12 = –12 < 24 thuộc miền nghiệm ABCD nên ta có bất phương trình 2x – y < 24.

Từ đó ta có hệ bất phương trình:

2x+y>242xy<24y9y222x+y>242xy<249y22

1 352 05/12/2022


Xem thêm các chương trình khác: