Biểu diễn miền nghiệm của hệ bất phương trình

Lời giải Bài 27 trang 32 SBT Toán 10 Tập 1 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.

1 574 05/12/2022


Giải SBT Toán 10 Cánh diều Bài ôn tập chương 2

Bài 27 trang 32 SBT Toán 10 Tập 1:

a) Biểu diễn miền nghiệm của hệ bất phương trình 3xy93x+6y30x00y4(I).

b) Tìm x, y là nghiệm của hệ bất phương trình (I) sao cho F = 3x + 4y đạt giá trị lớn nhất.

Lời giải:

Vẽ các đường thẳng:

d1: 3x – y = 9 là đường thẳng đi qua hai điểm có tọa độ là (3; 0) và (0; 9).

d2: 3x + 6y = 30 là đường thẳng đi qua hai điểm (10; 0) và (0; 5).

d3: x = 0 là trục tung.

d4: y = 0 là trục hoành

d5: y = 4 là đường thẳng đi qua điểm (0; 4) và song song với trục hoành.

Gạch đi các phần không thuộc miền nghiệm của mỗi bất phương trình trong hệ ta được miền nghiệm của hệ bất phương trình là miền không bị gạch chéo trong hình dưới đây chính là miền ngũ giác OABCD với O(0; 0), A(0; 4), B(2; 4), C(4; 3), D(3; 0):

Sách bài tập Toán 10 Bài ôn tập chương 2 - Cánh diều (ảnh 1)

b) Biểu thức F = 3x + 4y đạt giá trị lớn nhất tại một trong các đỉnh của ngũ giác OABCD.

Tính giá trị biểu thức F tại các điểm, ta được:

Tại O(0; 0) với x = 0 và y = 0 thì F = 3.0 + 4.0 = 0;

Tại A(0; 4) với x = 0 và y = 4 thì F = 3.0 + 4.4 = 16;

Tại B(2; 4) với x = 2 và y = 4 thì F = 3.2 + 4.4 = 22;

Tại C(4; 3) với x = 4 và y = 3 thì F = 3.4 + 4.3 = 24;

Tại D(3; 0) với x = 3 và y = 0 thì F = 3.3 + 4.0 = 9.

Từ đó giá trị lớn nhất của F là 24 với x = 4 và y = 3.

Vậy giá trị lớn nhất của F bằng 24 khi x = 4 và y = 3.

1 574 05/12/2022


Xem thêm các chương trình khác: