Giải Toán 8 trang 72 Chân trời sáng tạo

Với giải bài tập Toán 8 trang 72 trong Bài 3: Hình thang – Hình thang cân sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 8 trang 72.

1 678 23/04/2023


Giải Toán 8 trang 72

Bài 3 trang 72 Toán 8 Tập 1: Cho tam giác nhọn ABC có AH là đường cao. Tia phân giác của góc B cắt AC tại M. Từ M kẻ đường thẳng vuông góc với AH và cắt AB tại N. Chứng minh rằng:

a) Tứ giác BCMN là hình thang;

b) BN = MN.

Lời giải:

Bài 3 trang 72 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

a) Ta có AH ⊥ BC, AH ⊥ NM nên BC // NM

Tứ giác BCMN có BC // NM nên là hình thang.

b) Do BC // NM nên BMN^=MBC^ (so le trong).

Mà NBM^=MBC^ (do BM là tia phân giác của ABC^)

Suy ra NBM^=BMN^=MBC^

Tam giác BMN có NBM^=BMN^ nên là tam giác cân tại N

Suy ra BN = MN.

Bài 4 trang 72 Toán 8 Tập 1Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc B cắt AC tại D. Trên BC lấy điểm E sao cho BE = BA.

a) Chứng minh rằng DABD = DEBD.

b) Kẻ đường cao AH của tam giác ABC. Chứng minh rằng tứ giác ADEH là hình thang vuông.

c) Gọi I là giao điểm của AH với BD, đường thẳng EI cắt AB tại F. Chứng minh rằng tứ giác ACEF là hình thang vuông.

Lời giải:

Bài 4 trang 72 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

a) Xét DABD và DEBD có:

BA = BE (giả thiết);

ABD^=EBD^ (do BD là tia phân giác của ABE^);

BD là cạnh chung,

Do đó DABD = DEBD (c.g.c).

b) Do DABD = DEBD (câu a) nên BAD^=BED^=90° (hai góc tương ứng).

Do đó DE ⊥ BC

Mà AH ⊥ BC (giả thiết) nên DE // AH.

Tứ giác ADEH có DE // AH nên là hình thang

Lại có AHE^=90° nên ADEH là hình thang vuông.

c) Do DABD = DEBD (câu a) nên AD = ED (hai cạnh tương ứng)

Do đó D nằm trên đường trung trực của AE.

Lại có BA = BE (giả thiết) nên B nằm trên đường trung trực của AE.

Suy ra BD là đường trung trực của đoạn thẳng AE nên BD ⊥ AE, hay BI ⊥ AE.

Xét DABE có AI ⊥ BE, BI ⊥ AE nên I là trực tâm của tam giác

Do đó EI ⊥ AB hay EF ⊥ AB.

Mà CA ⊥ AB (do DABC vuông tại A)

Suy ra EF // CA.

Tứ giác ACEFF có EF // CA nên là hình thang.

Lại có FAC^=90° nên ACEFF là hình thang vuông.

Bài 5 trang 72 Toán 8 Tập 1Tứ giác nào trong Hình 15 là hình thang cân?

Bài 5 trang 72 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Lời giải:

• Hình 15a):

Ta thấy hai góc kề một đáy của tứ giác GHIK có số đo là 51° và 129° không bằng nhau.

Do đó tứ giác GHIK không phải là hình thang cân.

• Hình 15b):

Bài 5 trang 72 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Ta có Q^1+MQP^=180° (hai góc kề bù) nên

Q^1=180°MQP^=180°105°=75°.

Do đó Q^1=P^=75°

Mà hai góc này ở vị trí đồng vị nên MQ // NP.

Tứ giác MNPQ có MQ // NP nên là hình thang.

Do MQ // NP nên N^=75° (góc N so le trong với góc ngoài tại đỉnh M của hình thang)

Do đó N^=P^=75°.

Hình thang MNPQ có hai góc kề một đáy bằng nhau N^=P^ nên là hình thang cân.

• Hình 15c):

Bài 5 trang 72 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Ta có ADC^+D^1=180° (hai góc kề bù)

Suy ra ADC^=180°D^1=180°120°=60°

Do đó ADC^=A^1=60°, mà hai góc này ở vị trí so le trong nên DC // AB.

Tứ giác ABCD có DC // AB và AC = BD nên là hình thang cân.

Bài 6 trang 72 Toán 8 Tập 1Cho hình thang cân ABCD có AB // CD. Qua giao điểm E của AC và BD, ta vẽ đường thẳng song song với AB và cắt AD, BC lần lượt tại F và G (Hình 16). Chứng minh rằng EG là tia phân giác của góc CEB.

Bài 6 trang 72 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Bài 6 trang 72 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Do ABCD là hình thang cân nên AB // DC và AD = BC; AC = BD; DAB^=CBA^ (tính chất hình thang cân).

Xét DACD và DBDC có:

CD là cạnh chung;

AD = BC (chứng minh trên);

AC = BD (chứng minh trên).

Do đó DACD = DBDC (c.c.c)

Suy ra A^1=B^1 (hai góc tương ứng)

Lại có DAB^=CBA^ (chứng minh trên)

Nên DAB^A^1=CBA^B^1 hay A^2=B^2.

Mặt khác EG // AB nên E^1=A^2 (đồng vị) và E^2=B^2 (so le trong).

Suy ra E^1=E^2, do đó EG là tia phân giác của góc CEB.

Bài 7 trang 72 Toán 8 Tập 1Mặt bên của một chiếc va li (Hình 17a) có dạng hình thang cân và được vẽ lại như Hình 17b. Biết hình thang đó có độ dài đường cao là 60 cm, cạnh bên là 61 cm và đáy lớn là 92 cm. Tính độ dài đáy nhỏ.

Bài 7 trang 72 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Bài 7 trang 72 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Áp dụng định lí Pythagore vào DADE vuông tại E, ta có:

AD2 = AE2 + DE2

Suy ra DE2 = AD2 – AE2 = 612 – 602 = 3 721 – 3 600 = 121 = 112

Do đó DE = 11 cm.

Kẻ BF ⊥ CD, khi đó BF là đường cao của hình thang cân ABCD nên BF = 60 cm.

Xét DADE và DBCF có:

AED^=BFC^=90°;

AD = BC (do ABCD là hình thang cân);

ADE^=BCF^ (do ABCD là hình thang cân).

Do đó DADE = DBCF (cạnh huyền – góc nhọn)

Suy ra DE = CF = 11 cm (hai cạnh tương ứng).

Mà DE + EF + CF = DC

Nên EF = DC – DE – CF = 92 – 11 – 11 = 70 cm.

Tương tự Vận dụng 4, trang 71, Sách giáo khoa Toán 8, tập một, ta dễ dàng chứng minh được AB = EF = 70 cm.

Vậy độ dài đáy nhỏ của hình thang cân là 70 cm.

Xem thêm lời giải bài tập Toán 8 Chân trời sáng tạo hay, chi tiết khác: 

Giải Toán 8 trang 68

Giải Toán 8 trang 69

Giải Toán 8 trang 70

Giải Toán 8 trang 71

Giải Toán 8 trang 72

1 678 23/04/2023


Xem thêm các chương trình khác: