Giải Toán 11 trang 78 Tập 2 Kết nối tri thức
Với giải bài tập Toán 11 trang 78 Tập 2 trong Bài 30: Công thức nhân xác suất cho hai biến cố độc lập sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 trang 78 Tập 2.
Giải Toán 11 trang 78 Tập 2
Lời giải:
Chọn ngẫu nhiên một người đàn ông.
Gọi A là biến cố “Người đó nghiện thuốc lá”,
B là biến cố “Người đó mắc bệnh viêm phổi”.
Khi đó, AB là biến cố “Người đó nghiện thuốc lá và mắc bệnh viêm phổi”.
Ta có: P(A) = ; P(B) =
Suy ra: P(A) . P(B) = = 0,10552304
Mặt khác số người nghiện thuốc là và mắc bệnh viêm phổi là 752 nên
P(AB) = = 0,1504.
Do đó, P(AB) ≠ P(A) . P(B) nên hai biến cố A và B không độc lập.
Vậy ta kết luận rằng việc nghiện thuốc lá và mắc bệnh viêm phổi có liên quan với nhau.
Bài tập
Lời giải:
Hai biến cố A và B xung khắc khi và chỉ khi A ∩ B = ∅. Suy ra: P(AB) = 0.
Vì P(A) > 0, P(B) > 0 nên P(A) . P(B) > 0.
Do đó, P(AB) ≠ P(A) . P(B)
Vậy hai biến cố A và B không độc lập.
A: “Số ghi trên tấm thẻ là ước của 60” và B: “Số ghi trên tấm thẻ là ước của 48”.
Chứng tỏ rằng A và B là hai biến cố không độc lập.
Lời giải:
Ta có:
A = {1; 2; 3; 4; 5; 6; 10; 12; 15; 20; 30; 60}
B = {1; 2; 3; 4; 6; 8; 12; 16; 24; 48}
Do đó, AB = A ∩ B = {1; 2; 3; 4; 6; 12}.
Suy ra
P(A) = ; P(B) = ; P(AB) = .
Mặt khác, P(A) . P(B) = .
Khi đó P(AB) ≠ P(A) . P(B) nên hai biến cố A và B không độc lập.
a) Hai viên bi được lấy có cùng màu xanh;
b) Hai viên bi được lấy có cùng màu đỏ;
c) Hai viên bi được lấy có cùng màu;
d) Hai viên bi được lấy không cùng màu.
Lời giải:
Vì hai túi là khác nhau nên biến cố lấy một viên bi mỗi túi là độc lập.
Gọi biến cố A: “Hai viên bi được lấy có cùng màu xanh”;
B là biến cố “Hai viên bi được lấy có cùng màu đỏ”;
C là biến cố “Hai viên bi được lấy có cùng màu”.
a)
Xác suất lấy được viên bi màu xanh từ túi I là: .
Xác suất lấy được viên bi màu xanh từ túi II là: .
Theo quy tắc nhân, xác suất lấy được hai viên bi cùng màu xanh là:
P(A) = .
b)
Xác suất lấy được viên bi màu đỏ từ túi I là: .
Xác suất lấy được viên bi màu đỏ từ túi II là: .
Theo quy tắc nhân, xác suất lấy được hai viên bi cùng màu đỏ là:
P(B) = .
c)
Ta có C = A ∪ B mà A và B xung khắc nên áp dụng công thức cộng xác suất:
P(C) = P(A ∪ B) = P(A) + P(B) = .
Vậy xác suất để hai viên bi được lấy có cùng màu là: .
d) Gọi biến cố D: “Hai viên bi được lấy không cùng màu”.
Khi đó, =C.
Suy ra: P(D) = 1 – P() = 1 – P(C) = 1 – = .
Vậy xác suất để hai viên bi được lấy không cùng màu là .
Lời giải:
Gọi A là biến cố: “Hai quả cầu lấy ra không có quả cầu nào ghi số 1”,
A1 là biến cố: “Quả cầu lấy ra từ túi I không ghi số 1”,
A2 là biến cố: “Quả cầu lấy ra từ túi II không ghi số 1”.
Ta có A = A1A2. Hai biến cố A1 và A2 độc lập nên P(A) = P(A1) . P(A2).
Lại có P(A1) = P(A2) = = 0,9. Do đó P(A) = (0,9)2.
Gọi B là biến cố: “Hai quả cầu lấy ra không có quả cầu nào ghi số 5”,
B1 là biến cố: “Quả cầu lấy ra từ túi I không ghi số 5”,
B2 là biến cố: “Quả cầu lấy ra từ túi II không ghi số 5”.
Ta có B = B1B2. Hai biến cố B1 và B2 độc lập nên P(B) = P(B1) . P(B2).
Lại có P(B1) = P(B2) = = 0,9. Do đó P(B) = (0,9)2.
Gọi E là biến cố: “Trong hai quả cầu lấy ra không có quả cầu nào ghi số 1 hoặc ghi số 5”.
Ta có E = A ∪ B.
Theo công thức cộng xác suất ta có P(E) = P(A) + P(B) – P(AB).
Ta có AB là biến cố: “Hai quả cầu lấy ra không có quả nào ghi số 1 và ghi số 5”.
Gọi H1 là biến cố: “Quả cầu lấy ra từ túi I không ghi số 1 và số 5”,
H2 là biến cố: “Quả cầu lấy ra từ túi II không ghi số 1 và số 5”.
Ta có AB = H1H2. Hai biến cố H1 và H2 độc lập nên P(AB) = P(H1) . P(H2).
Lại có P(H1) = P(H2) = . Từ đó P(AB) = (0,8)2.
Do đó, P(E) = P(A) + P(B) – P(AB) = (0,9)2 + (0,9)2 – (0,8)2 = 0,98.
Vậy xác suất để trong hai quả cầu được lấy ra không có quả cầu nào ghi số 1 hoặc ghi số 5 là 0,98.
a) Cả hai học sinh được chọn đều đạt yêu cầu;
b) Cả hai học sinh được chọn đều không đạt yêu cầu;
c) Chỉ có đúng một học sinh được chọn đạt yêu cầu;
d) Có ít nhất một trong hai học sinh được chọn đạt yêu cầu.
Lời giải:
Xác suất để học sinh tỉnh X không đạt yêu cầu là 100% – 93% = 7% = 0,07.
Xác suất để học sinh tỉnh Y không đạt yêu cầu là 100% – 87% = 13% = 0,13.
Gọi A là biến cố: “Học sinh tỉnh X đạt yêu cầu”.
B là biến cố: “Học sinh tỉnh Y đạt yêu cầu”.
Khi đó ta có P(A) = 0,93; P(B) = 0,87; P() = 0.07; P() = 0,13 .
a) Xác suất để cả hai học sinh được chọn đều đạt yêu cầu là:
P(AB) = P(A) . P(B) = 0,93 . 0,87 = 0,8091.
b) Xác suất để cả hai học sinh được chọn đều không đạt yêu cầu là:
P() = P().P() = 0,07 . 0,13 = 0,0091.
c) Xác suất để chỉ có đúng một học sinh được chọn đạt yêu cầu là:
P(A) + P(B) = 0,93 . 0,13 + 0,07 . 0,87 = 0,1818.
d) Xác suất để có ít nhất một trong hai học sinh được chọn đạt yêu cầu là:
P(A ∪ B) = P(A) + P(B) – P(AB) = 0,93 + 0,87 – 0,8091 = 0,9909.
Xem thêm Lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:
Xem thêm Lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:
Câu hỏi trang 76 Toán 11 Tập 2: Hai biến cố A và B trong HĐ1 độc lập hay không độc lập ? Tại sao...
Xem thêm Lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:
Bài 29: Công thức cộng xác suất
Bài tập cuối chương 8 trang 79
Bài 31: Định nghĩa và ý nghĩa của đạo hàm
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Kết nối tri thức - hay nhất
- Văn mẫu lớp 11 - Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn 11 – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn 11 - Kết nối tri thức
- Giải SBT Ngữ văn 11 – Kết nối tri thức
- Bố cục tác phẩm Ngữ văn 11 – Kết nối tri thức
- Giải Chuyên đề học tập Ngữ văn 11 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Kết nối tri thức
- Soạn văn 11 Kết nối tri thức (ngắn nhất)
- Bài tập Tiếng Anh 11 Global success theo Unit có đáp án
- Giải sgk Tiếng Anh 11 – Global success
- Giải sbt Tiếng Anh 11 - Global Success
- Trọn bộ Từ vựng Tiếng Anh 11 Global success đầy đủ nhất
- Ngữ pháp Tiếng Anh 11 Global success
- Giải sgk Vật lí 11 – Kết nối tri thức
- Lý thuyết Vật lí 11 – Kết nối tri thức
- Giải sbt Vật lí 11 – Kết nối tri thức
- Giải Chuyên đề học tập Vật lí 11 – Kết nối tri thức
- Chuyên đề dạy thêm Vật lí 11 cả 3 sách (2024 có đáp án)
- Giải sgk Hóa học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Hóa học 11 – Kết nối tri thức
- Lý thuyết Hóa 11 - Kết nối tri thức
- Giải sbt Hóa học 11 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 11 cả 3 sách (2024 có đáp án)
- Giải sgk Sinh học 11 – Kết nối tri thức
- Lý thuyết Sinh học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Sinh học 11 – Kết nối tri thức
- Giải sbt Sinh học 11 – Kết nối tri thức
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Kết nối tri thức
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Kết nối tri thức
- Lý thuyết Kinh tế pháp luật 11 – Kết nối tri thức
- Giải sbt Kinh tế pháp luật 11 – Kết nối tri thức
- Giải sgk Lịch sử 11 – Kết nối tri thức
- Giải Chuyên đề học tập Lịch sử 11 – Kết nối tri thức
- Lý thuyết Lịch sử 11 - Kết nối tri thức
- Giải sbt Lịch sử 11 – Kết nối tri thức
- Giải sgk Địa lí 11 – Kết nối tri thức
- Giải Chuyên đề học tập Địa lí 11 – Kết nối tri thức
- Lý thuyết Địa lí 11 - Kết nối tri thức
- Giải sbt Địa lí 11 – Kết nối tri thức
- Giải sgk Công nghệ 11 – Kết nối tri thức
- Lý thuyết Công nghệ 11 - Kết nối tri thức
- Giải sbt Công nghệ 11 – Kết nối tri thức
- Giải sgk Tin học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Tin học 11 – Kết nối tri thức
- Lý thuyết Tin học 11 - Kết nối tri thức
- Giải sbt Tin học 11 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng an ninh 11 – Kết nối tri thức
- Lý thuyết Giáo dục quốc phòng 11 – Kết nối tri thức
- Giải sbt Giáo dục quốc phòng 11 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 11 – Kết nối tri thức