Giải Toán 11 trang 59 Tập 2 Kết nối tri thức
Với giải bài tập Toán 11 trang 59 Tập 2 trong Bài 26: Khoảng cách sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 trang 59 Tập 2.
Giải Toán 11 trang 59 Tập 2
a) Tính chiều cao của hình chóp.
b) Tính khoảng cách giữa BC và (SAD).
c) Xác định đường vuông góc chung và tính khoảng cách giữa AB và SD.
Lời giải:
a) Kẻ SE AD tại E.
Vì (SAD) (ABCD), (SAD) (ABCD) = AD mà SE AD nên SE (ABCD).
Vì tam giác SAD là tam giác đều cạnh a nên SE = .
Vậy chiều cao của hình chóp bằng .
b) Vì ABCD là hình vuông nên BC // AD, suy ra BC // (SAD).
Khi đó d(BC, (SAD)) = d(B, (SAD)).
Vì ABCD là hình vuông nên AB AD mà SE (ABCD) nên SE AB.
Vì AB AD và SE AB nên AB (SAD).
Do đó d(BC, (SAD)) = d(B, (SAD)) = AB = a.
c) Kẻ AF SD tại F, mà AB (SAD) nên AB AF.
Vì AF SD và AB AF nên AF là đường vuông góc chung của AB và SD.
Vì tam giác SAD đều có AF là đường cao nên AF = .
Vậy d(AB, SD) = AF = .
Bài 7.23 trang 59 Toán 11 Tập 2: Cho hình hộp chữ nhật ABCD.A'B'C'D'có AA' = a, AB = b, BC = c.
a) Tính khoảng cách giữa CC' và (BB'D'D).
b) Xác định đường vuông góc chung và tính khoảng cách giữa AC và B'D'.
Lời giải:
a) Kẻ CH BD tại H.
Vì BB' (ABCD) nên BB' CH mà CH BD nên CH (BB'D'D).
Vì BB'C'C là hình chữ nhật nên BB' // CC' nên CC' // (BB'D'D).
Khi đó d(CC', (BB'D'D)) = d(C, (BB'D'D)) = CH.
Vì ABCD là hình chữ nhật nên AB = CD = b; AD = BC = c.
Xét tam giác BCD vuông tại C, CH là đường cao nên
.
Vậy d(CC', (BB'D'D)) .
b) Gọi O là giao điểm của AC và BD, O' là giao điểm của A'C' và B'D'.
Do ABCD là hình chữ nhật nên O là trung điểm của AC, BD và A'B'C'D' là hình chữ nhật nên O' là trung điểm của A'C' và B'D'.
Có AA' // CC' và AA' = CC' (do chúng cùng song song và bằng BB’) nên AA'C'C là hình bình hành mà AA' (ABCD) nên AA' AC. Do đó AA'C'C là hình chữ nhật.
Do AA'C'C là hình chữ nhật và O là trung điểm của AC, O' là trung điểm của A'C' nên OO' AC và OO' = AA' = a.
Có BB' // DD' và BB' = DD' (do chúng cùng song song và bằng AA') nên BB'D'D là hình bình hành mà BB' (ABCD) nên BB' BD. Do đó BB'D'D là hình chữ nhật.
Vì BB'D'D là hình chữ nhật và O là trung điểm của BD, O' là trung điểm của B'D' nên OO' B'D'.
Vì OO' AC và OO' B'D' nên OO' là đường vuông góc chung của AC và B'D'.
Khi đó d(AC, B'D') = OO' = a.
a) MN là đường vuông góc chung của AB và CD.
b) Các cặp cạnh đối diện trong tứ diện ABCD đều vuông góc với nhau.
Lời giải:
a) Xét tam giác ADB có AD = BD = a nên tam giác ADB cân tại D.
Vì M là trung điểm của AB nên DM là trung tuyến.
Vì tam giác ADB cân tại D, DM là trung tuyến nên DM đồng thời là đường cao hay DM AB.
Xét tam giác ABC có AC = BC = a nên tam giác ABC cân tại C mà CM là trung tuyến nên CM là đường cao hay CM AB.
Vì DM AB và CM AB nên AB (DCM), suy ra AB MN.
Xét tam giác ADC có AD = AC = a nên tam giác ACD cân tại A mà AN là trung tuyến nên AN đồng thời là đường cao hay AN CD.
Xét tam giác BCD có BD = BC = a nên tam giác BCD cân tại B mà BN là trung tuyến nên BN đồng thời là đường cao hay BN CD.
Vì AN CD và BN CD nên CD (ABN), suy ra CD MN.
Vì AB MN và CD MN nên MN là đường vuông góc chung của AB và CD.
b) Vì AB (DCM) nên AB CD.
Gọi E là trung điểm của BC.
Xét tam giác ABC có AB = AC = a nên tam giác ABC cân tại A mà AE là trung tuyến nên AE đồng thời là đường cao hay AE BC.
Xét tam giác BDC có BD = CD = a nên tam giác BCD cân tại D mà DE là trung tuyến nên DE đồng thời là đường cao hay DE BC.
Có AE BC và DE BC nên BC (ADE), suy ra BC AD.
Gọi F là trung điểm của BD.
Xét tam giác ADB có AB = AD = a nên tam giác ADB cân tại A mà AF là trung tuyến nên AF đồng thời là đường cao hay AF BD.
Xét tam giác BCD có BC = CD = a nên tam giác BCD cân tại C mà CF là trung tuyến nên CF đồng thời là đường cao hay CF BD.
Vì AF BD và CF BD nên BD (ACF), suy ra BD AC.
Bài 7.25 trang 59 Toán 11 Tập 2: Cho hình lập phương ABCD.A'B'C'D'có cạnh a.
b) Xác định các giao điểm E, F của DB' với (D'AC), (BC'A'). Tính d((D'AC), (BC'A')).
Lời giải:
a) Vì AA' // CC' và AA' = CC' (do chúng cùng song song và bằng BB') nên AA'C'C là hình bình hành, suy ra AC // A'C' do đó A'C' // (D'AC).
Vì AB // C'D' và AB = C'D' (do chúng cùng song song và bằng CD) nên ABC'D' là hình bình hành suy ra BC' // AD', do đó BC' // (D'AC).
Vì A'C' // (D'AC) và BC' // (D'AC) nên (BC'A') // (D'AC).
Vì ABCD là hình vuông nên AC BD.
Vì BB' (ABCD) nên BB' AC mà AC BD nên AC (BB'D), suy ra AC DB'.
Vì AC // A'C' mà AC DB' nên A'C' DB'.
Do AD (ABB'A') nên AD A'B.
Vì ABB'A' là hình vuông nên AB' A'B mà AD A'B nên A'B (ADB').
Suy ra A'B DB'.
Có A'C' DB' và A'B DB' nên DB' (BC'A').
Vì A'D' // BC và A'D' = BC (do chúng cùng song song và bằng AD) nên A'D'CB là hình bình hành, suy ra A'B // D'C mà A'B DB' nên D'C DB'.
Có AC DB' và D'C DB' nên DB' (D'AC).
b) Gọi O và O' lần lượt là tâm của hai hình vuông ABCD và A'B'C'D'.
Trong mặt phẳng (BDD'B'), có DB' D'O = E. Khi đó DB' (D'AC) = E.
Trong mặt phẳng (BDD'B'), có DB' BO' = F. Khi đó DB' (BC'A') = F.
Vì (BC'A') // (D'AC) nên d((D'AC), (BC'A')) = d(E, (BC'A')) = EF (vì DB' (BC'A')).
Vì DB' (BC'A') nên DB' BO' và DB' (D'AC) nên DB' D'O, suy ra BO' // D'O.
Xét tam giác DBF, có OE // BF nên theo định lí Ta lét, ta có: .
Xét tam giác B'D'E có O'F // D'E nên theo định lí Ta lét, ta có: B'F = EF.
Do đó B'F = EF = DE EF = DB' .
Xét tam giác BCD vuông tại C, có .
Xét tam giác B'BD vuông tại B, có
Vậy d((D'AC), (BC'A')) = .
Lời giải:
Giá đỡ ba chân ở Hình 7.90 có dạng hình chóp đều S.ABC.
Vì S.ABC là hình chóp đều nên SH (ABC) với H là trọng tâm của tam giác ABC.
Gọi AH BC tại M. Khi đó M là trung điểm của BC.
Vì ABC là tam giác đều cạnh 110 cm, AM là đường cao nên AM = (cm).
Vì AH = AM = (cm).
Xét tam giác SHA vuông tại H, có:
SH = (cm).
Vậy chiều cao giá đỡ khoảng 112,28 cm.
Lời giải:
Giả sử mặt phẳng đáy bể nước là mặt phẳng (P), mặt phẳng mặt nước là mặt phẳng (Q), dây dọi là đường thẳng MH.
Khi đó ta có (P) // (Q). Mà d((P), (Q)) = d(M, (P)), với M (Q).
Lại có, sợi dây của quả dọi có phương vuông góc với mặt phẳng nước và đáy bể, do đó MH (P).
Khi đó d(M, (P)) = MH, MH chính là độ dài đoạn dây dọi nằm trong bể nước.
Vậy để đo độ sâu của bể, ta có thể thả quả dọi chạm đáy bể và đo chiều dài của đoạn dây dọi nằm trong bể nước.
Xem thêm Lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:
Xem thêm Lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:
HĐ1 trang 54 Toán 11 Tập 2: a) Cho điểm M và đường thẳng a. Gọi H là hình chiếu của M trên a. Với mỗi điểm K thuộc a, giải thích vì sao MK MH (H.7.74)...
Luyện tập 1 trang 55 Toán 11 Tập 2: Cho hình lăng trụ đứng ABC.A'B'C' có ABC là tam giác vuông cân tại A, AB = a, AA' = h (H.7.77). a) Tính khoảng cách từ A đến mặt phẳng (BCC'B')...
Luyện tập 3 trang 58 Toán 11 Tập 2:Cho hình chóp S.ABCDcó đáy là hình vuông cạnh a, SA (ABCD), SA = a. a) Tính khoảng cách từ A đến SC...
Bài 7.23 trang 59 Toán 11 Tập 2: Cho hình hộp chữ nhật ABCD.A'B'C'D'có AA' = a, AB = b, BC = c. a) Tính khoảng cách giữa CC' và (BB'D'D)...
Bài 7.25 trang 59 Toán 11 Tập 2: Cho hình lập phương ABCD.A'B'C'D'có cạnh a. a) Chứng minh rằng hai mặt phẳng (D'AC)và (BC'A') song song với nhau và DB' vuông góc với hai mặt phẳng đó...
Xem thêm Lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:
Bài 25: Hai mặt phẳng vuông góc
Bài tập cuối chương 7 trang 64
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Kết nối tri thức - hay nhất
- Văn mẫu lớp 11 - Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn 11 – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn 11 - Kết nối tri thức
- Giải SBT Ngữ văn 11 – Kết nối tri thức
- Bố cục tác phẩm Ngữ văn 11 – Kết nối tri thức
- Giải Chuyên đề học tập Ngữ văn 11 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Kết nối tri thức
- Soạn văn 11 Kết nối tri thức (ngắn nhất)
- Bài tập Tiếng Anh 11 Global success theo Unit có đáp án
- Giải sgk Tiếng Anh 11 – Global success
- Giải sbt Tiếng Anh 11 - Global Success
- Trọn bộ Từ vựng Tiếng Anh 11 Global success đầy đủ nhất
- Ngữ pháp Tiếng Anh 11 Global success
- Giải sgk Vật lí 11 – Kết nối tri thức
- Lý thuyết Vật lí 11 – Kết nối tri thức
- Giải sbt Vật lí 11 – Kết nối tri thức
- Giải Chuyên đề học tập Vật lí 11 – Kết nối tri thức
- Chuyên đề dạy thêm Vật lí 11 cả 3 sách (2024 có đáp án)
- Giải sgk Hóa học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Hóa học 11 – Kết nối tri thức
- Lý thuyết Hóa 11 - Kết nối tri thức
- Giải sbt Hóa học 11 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 11 cả 3 sách (2024 có đáp án)
- Giải sgk Sinh học 11 – Kết nối tri thức
- Lý thuyết Sinh học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Sinh học 11 – Kết nối tri thức
- Giải sbt Sinh học 11 – Kết nối tri thức
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Kết nối tri thức
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Kết nối tri thức
- Lý thuyết Kinh tế pháp luật 11 – Kết nối tri thức
- Giải sbt Kinh tế pháp luật 11 – Kết nối tri thức
- Giải sgk Lịch sử 11 – Kết nối tri thức
- Giải Chuyên đề học tập Lịch sử 11 – Kết nối tri thức
- Lý thuyết Lịch sử 11 - Kết nối tri thức
- Giải sbt Lịch sử 11 – Kết nối tri thức
- Giải sgk Địa lí 11 – Kết nối tri thức
- Giải Chuyên đề học tập Địa lí 11 – Kết nối tri thức
- Lý thuyết Địa lí 11 - Kết nối tri thức
- Giải sbt Địa lí 11 – Kết nối tri thức
- Giải sgk Công nghệ 11 – Kết nối tri thức
- Lý thuyết Công nghệ 11 - Kết nối tri thức
- Giải sbt Công nghệ 11 – Kết nối tri thức
- Giải sgk Tin học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Tin học 11 – Kết nối tri thức
- Lý thuyết Tin học 11 - Kết nối tri thức
- Giải sbt Tin học 11 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng an ninh 11 – Kết nối tri thức
- Lý thuyết Giáo dục quốc phòng 11 – Kết nối tri thức
- Giải sbt Giáo dục quốc phòng 11 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 11 – Kết nối tri thức