Giải Toán 11 trang 56 Tập 2 Kết nối tri thức

Với giải bài tập Toán 11 trang 56 Tập 2 trong Bài 26: Khoảng cách sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 trang 56 Tập 2.

1 409 02/12/2023


Giải Toán 11 trang 56 Tập 2

HĐ3 trang 56 Toán 11 Tập 2: a) Cho hai đường thẳng m và n song song với nhau. Khi một điểm M thay đổi trên m thì khoảng cách từ nó đến đường thẳng n có thay đổi hay không?

b) Cho hai mặt phẳng song song (P) và (Q) và một điểm M thay đổi trên (P) (H.7.79). Hỏi khoảng cách từ M đến (Q) thay đổi thế nào khi M thay đổi.

HĐ3 trang 56 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Lời giải:

a) Khi M thay đổi trên m thì khoảng cách từ nó đến đường thẳng n không thay đổi vì m // n.

b) Vì (P) // (Q) nên các đường thẳng trên mặt phẳng (P) đều song song với mặt phẳng (Q).

Khi đó M thay đổi trên (P) thì khoảng cách từ M đến (Q) không thay đổi (dựa vào kết quả của hoạt động 2).

Câu hỏi trang 56 Toán 11 Tập 2: Nếu đường thẳng a thuộc mặt phẳng (P) và mặt phẳng (Q) song song với (P) thì giữa d(a, (Q)) và d((P), (Q)) có mối quan hệ gì?

Lời giải:

Lấy M bất kì thuộc a nằm trong mặt phẳng (P), suy ra M thuộc (P).

Vì a // (Q), khi đó d (a, (Q)) = d(M, (Q)).

Vì (P) // (Q) nên d((P), (Q)) = d(M, (Q)).

Do đó d(a, (Q)) = d((P), (Q)).

Luyện tập 2 trang 56 Toán 11 Tập 2: Cho hình chóp S.ABC có SA (ABC), SA = h. Gọi M, N, P tương ứng là trung điểm của SA, SB, SC.

a) Tính d((MNP), (ABC)) và d(NP, (ABC)).

b) Giả sử tam giác ABC vuông tại B và AB = a. Tính d(A, (SBC)).

Luyện tập 2 trang 56 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Lời giải:

Luyện tập 2 trang 56 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

a) Xét tam giác SAB có M là trung điểm của SA, N là trung điểm của SB nên MN là đường trung bình của tam giác SAB suy ra MN // AB, do đó MN // (ABC).

Xét tam giác SBC có N là trung điểm của SB, P là trung điểm của SC nên PN là đường trung bình của tam giác SBC suy ra PN // BC, do đó PN // (ABC).

Vì MN // (ABC) và PN // (ABC) mà MN PN = N nên (MNP) // (ABC).

Khi đó d((MNP), (ABC)) = d(M, (ABC)).

Vì SA (ABC) nên MA (ABC). Do đó d(M, (ABC)) = MA.

Vì M là trung điểm SA nên AM = SA2=h2 .

Do đó d((MNP), (ABC)) = h2 .

Vì PN // (ABC) nên d(NP, (ABC)) = d(N, (ABC)).

Vì MN // (ABC) nên d(N, (ABC)) = d(M, (ABC)) = MA = h2 .

Vậy d(NP, (ABC)) = h2 .

b) Vì ABC là tam giác vuông tại B nên BC AB.

Vì SA (ABC) nên SA BC mà BC AB nên BC (SAB), suy ra (SBC) (SAB).

Kẻ AH SB tại H.

Luyện tập 2 trang 56 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Khi đó d(A, (SBC)) = AH.

Vì SA (ABC) nên SA AB.

Xét tam giác SAB vuông tại A, AH là đường cao, có

1AH2=1SA2+1AB2=1h2+1a2=a2+h2a2h2AH=aha2+h2.

Vậy d(A, (SBC)) = aha2+h2 .

Xem thêm Lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:

Giải Toán 11 trang 54 Tập 2

Giải Toán 11 trang 55 Tập 2

Giải Toán 11 trang 56 Tập 2

Giải Toán 11 trang 57 Tập 2

Giải Toán 11 trang 58 Tập 2

Giải Toán 11 trang 59 Tập 2

1 409 02/12/2023


Xem thêm các chương trình khác: