Giải Toán 11 trang 55 Tập 2 Kết nối tri thức

Với giải bài tập Toán 11 trang 55 Tập 2 trong Bài 26: Khoảng cách sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 trang 55 Tập 2.

1 508 02/12/2023


Giải Toán 11 trang 55 Tập 2

Luyện tập 1 trang 55 Toán 11 Tập 2: Cho hình lăng trụ đứng ABC.A'B'C' có ABC là tam giác vuông cân tại A, AB = a, AA' = h (H.7.77).

a) Tính khoảng cách từ A đến mặt phẳng (BCC'B').

b) Tam giác ABC' là tam giác gì? Tính khoảng cách từ A đến BC'.

Luyện tập 1 trang 55 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Lời giải:

Luyện tập 1 trang 55 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

a) Vì ABC.A'B'C' là hình lăng trụ đứng nên BB' (ABC) nên (BCC'B') (ABC).

Hạ AH BC tại H.

Luyện tập 1 trang 55 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Khi đó AH chính là khoảng cách từ A đến mặt phẳng (BCC'B').

Vì tam giác ABC vuông cân tại A nên AB = AC = a.

Xét tam giác ABC vuông cân tại A, có

1AH2=1AB2+1AC2=1a2+1a2=2a2AH=a2

Vậy khoảng cách từ A đến mặt phẳng (BCC'B') bằng a2.

b) Vì tam giác ABC vuông cân tại A nên AB AC.

Vì AA' (ABC) nên AA' AB mà AB AC nên AB (ACC'A'), suy ra AB AC'.

Do đó tam giác ABC' là tam giác vuông tại A.

Hạ AK BC' tại K. Khi đó d(A, BC') = AK.

Vì ACC'A' là hình chữ nhật nên AC'2=AA'2+A'C'2=h2+a2 .

Xét tam giác ABC' vuông tại A, AK là đường cao, ta có:

1AK2=1AB2+1AC'2=1a2+1a2+h2=2a2+h2a2a2+h2

AK2=a2a2+h22a2+h2AK=aa2+h22a2+h2

Vậy khoảng cách từ A đến BC' bằng aa2+h22a2+h2.

2. Khoảng cách giữa các đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song

HĐ2 trang 55 Toán 11 Tập 2: Cho đường thẳng a song song với mặt phẳng (P). Lấy hai điểm M; N bất kỳ thuộc a và gọi A; B tương ứng là các hình chiếu của chúng trên (P) (H.7.78).

Giải thích vì sao ABNM là một hình chữ nhật và M, N có cùng khoảng cách đến (P).

HĐ2 trang 55 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Lời giải:

Vì A, B lần lượt là các hình chiếu của M, N trên (P) nên AM (P), BN (P).

Do đó AM // BN hay A, B, M, N cùng thuộc một mặt phẳng.

Vì MN // (P) và (ABNM) (P) = AB nên MN // AB.

Vì AM // BN và MN // AB nên ABNM là hình bình hành.

Mặt khác AM (P) nên AM AB. Do đó ABNM là hình chữ nhật.

Vì ABNM là hình chữ nhật nên AM = BN nên M, N có cùng khoảng cách đến (P).

Xem thêm Lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:

Giải Toán 11 trang 54 Tập 2

Giải Toán 11 trang 55 Tập 2

Giải Toán 11 trang 56 Tập 2

Giải Toán 11 trang 57 Tập 2

Giải Toán 11 trang 58 Tập 2

Giải Toán 11 trang 59 Tập 2

1 508 02/12/2023


Xem thêm các chương trình khác: