Giải Toán 11 trang 52 Tập 2 Kết nối tri thức

Với giải bài tập Toán 11 trang 52 Tập 2 trong Bài 25: Hai mặt phẳng vuông góc sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 trang 52 Tập 2.

1 255 30/11/2023


Giải Toán 11 trang 52 Tập 2

HĐ13 trang 52 Toán 11 Tập 2:Cho hình chóp đều S.A1A2An. Một mặt phẳng không đi qua S và song song với mặt phẳng đáy, cắt các cạnh SA1,SA2,,SAn tương ứng tại B1,B2,,Bn (H.7.69).

a) Giải thích vì sao S.B1B2Bn là một hình chóp đều.

b) Gọi H là tâm của đa giác A1A2An. Chứng minh rằng đường thẳng SH đi qua tâm K của đa giác đều B1B2Bn và HK vuông góc với các mặt phẳng A1A2An, B1B2Bn.

Giải Toán 11 trang 52 Tập 2 Kết nối tri thức

Lời giải:

a) Mặt phẳng không đi qua S và song song với mặt phẳng đáy, cắt các cạnh SA1,SA2,,SAn tương ứng tại B1,B2,,Bn nên các đa giác A1A2…An và B1B2…Bn có các cạnh tương ứng song song.

Áp dụng định lí Talet trong từng tam giác SA1A2; SA2A3; …; SA1An, ta được:

SB1SA1=SB2SA2=...=SBnSAn, suy ra B1B2A1A2=B2B3A2A3=...=BnB1AnA1.

Vì đa giác A1A2An đều nên đa giác B1B2…Bn đều và SA1 = SA2 = … = SAn nên SB1 = SB2 = …= SBn.

Vậy S.B1B2Bn là hình chóp đều.

b) Vì H là tâm của đáy A1A2Anvà hình chóp S.A1A2An là hình chóp đều nên

SH ⊥ (A1A2…An).

Do (A1A2…An) // (B1B2…Bn ) và SH ⊥ (A1A2…An) nên SH ⊥ (B1B2…Bn ).

Hơn nữa, S.B1B2Bn là hình chóp đều nên SH giao với (B1B2…Bn ) tại tâm của đáy B1B2…Bn .

Vậy đường thẳng SH đi qua tâm K của đa giác đều B1B2Bn và HK vuông góc với các mặt phẳng A1A2An, B1B2Bn.

Câu hỏi trang 52 Toán 11 Tập 2: Hình chóp cụt đều có các cạnh bên bằng nhau hay không?

Lời giải:

Giải Toán 11 trang 52 Tập 2 Kết nối tri thức

Hình chóp cụt đều có các cạnh bên bằng nhau vì:

A1B1 = SA1 – SB1; A2B2 = SA2 – SB2; …; AnBn = SAn – SBn.

Dựa vào kết quả của hoạt động 13, ta có: SA1 = SA2 = … = SAn và SB1 = SB2 = …= SBn nên A1B1 = A2B2 = AnBn.

Xem thêm Lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:

Giải Toán 11 trang 44 Tập 2

Giải Toán 11 trang 45 Tập 2

Giải Toán 11 trang 46 Tập 2

Giải Toán 11 trang 47 Tập 2

Giải Toán 11 trang 48 Tập 2

Giải Toán 11 trang 49 Tập 2

Giải Toán 11 trang 50 Tập 2

Giải Toán 11 trang 51 Tập 2

Giải Toán 11 trang 52 Tập 2

Giải Toán 11 trang 53 Tập 2

1 255 30/11/2023


Xem thêm các chương trình khác: