Bài 7.17 trang 53 Toán 11 Tập 2 | Kết nối tri thức Giải Toán lớp 11

Lời giải Bài 7.17 trang 53 Toán 11 Tập 2 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 460 30/11/2023


Giải Toán 11 Bài 25: Hai mặt phẳng vuông góc

Bài 7.17 trang 53 Toán 11 Tập 2: Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a.

a) Tính độ dài đường chéo của hình lập phương.

b) Chứng minh rằng (ACC'A') (BDD'B').

c) Gọi O là tâm của hình vuông ABCD. Chứng minh rằng COC'^ là một góc phẳng của góc nhị diện [C, BD, C']. Tính (gần đúng) số đo của các góc nhị diện [C, BD, C'], [A, BD,C'].

Lời giải:

Giải Toán 11 trang 53 Tập 2 Kết nối tri thức

a) Vì ABCD.A'B'C'D' là hình lập phương nên có các mặt là hình vuông.

Xét tam giác ABC vuông tại B, có AC=AB2+BC2=a2+a2=a2.

Vì AA' (ABCD) nên AA' AC.

Xét tam giác A'AC vuông tại A, có A'C=AA'2+AC2=a2+2a2=a3.

Vậy đường chéo của hình lập phương có độ dài là a3.

b) Vì AA' (ABCD) nên AA' BD.

Vì ABCD là hình vuông nên AC BD mà AA' BD, suy ra BD (ACC'A').

Vì BD (ACC'A') nên (ACC'A') (BDD'B').

c) Vì BD (ACC'A') nên BD C'O mà CO BD (do AC BD) nên COC'^là góc phẳng nhị diện của góc nhị diện [C, BD, C'].

Do ABCD là hình vuông nên O là trung điểm của AC, suy ra AO=OC=AC2=a22.

Xét tam giác C'CO vuông tại C, có tanC'OC^=CC'CO=aa22=2 C'OC^55°.

Vậy số đo của các góc nhị diện [C, BD, C'] khoảng 55°.

Vì AO BD (do AC ⊥ BD), BD C'O nên AOC'^ là góc phẳng nhị diện của góc nhị diện [A, BD,C'].

AOC'^+C'OC^=180°nên AOC'^=180°C'OC^180°55°=125°.

Vậy số đo góc nhị diện [A, BD,C'] khoảng 125°.

1 460 30/11/2023


Xem thêm các chương trình khác: