Giải Toán 11 trang 51 Tập 2 Kết nối tri thức

Với giải bài tập Toán 11 trang 51 Tập 2 trong Bài 25: Hai mặt phẳng vuông góc sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 trang 51 Tập 2.

1 179 30/11/2023


Giải Toán 11 trang 51 Tập 2

HĐ11 trang 51 Toán 11 Tập 2: Tháp lớn tại Bảo tàng Louvre ở Paris (H.7.66) (với kết cấu kính và kim loại) có dạng hình chóp với đáy là hình vuông có cạnh bằng 34 m, các cạnh bên bằng nhau và có độ dài xấp xỉ 32,3 m (theo Wikipedia.org).

Giải thích vì sao hình chiếu của đỉnh trên đáy là tâm của đáy tháp.

HĐ11 trang 51 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Lời giải:

HĐ11 trang 51 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Giả sử tháp có dạng hình chóp S.ABCD với đáy là hình vuông và các cạnh bên bằng nhau.

Theo đề có: AB = BC = CD = DA = 34 m, SA = SB = SC = SD 32,3 m.

Gọi O là hình chiếu của S trên mặt đáy nên SO ⊥ (ABCD).

Xét tam giác SOB vuông tại O nên OB=SB2SO2;

Xét tam giác SOD vuông tại O nên OD=SD2SO2;

Xét tam giác SOA vuông tại O nên OA=SA2SO2;

Xét tam giác SOC vuông tại O nên OC=SC2SO2.

Mà SA = SB = SC = SD nên OA = OB = OC = OD hay O là tâm đường tròn ngoại tiếp hình vuông ABCD, do đó O là tâm của hình vuông.

HĐ12 trang 51 Toán 11 Tập 2: Cho hình chóp S.A1A2An. Gọi O là hình chiếu của S trên mặt phẳng A1A2An (H.7.67).

a) Trong trường hợp hình chóp đã cho là đều, vị trí của điểm O có gì đặc biệt đối với đa giác đều A1A2An?

b) Nếu đa giác A1A2An là đều và O là tâm của đa giác đó thì hình chóp đã cho có gì đặc biệt?

HĐ12 trang 51 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Lời giải:

a) Do S.A1A2An là hình chóp đều nên SA1 = SA2 = … = SAn

Vì O là hình chiếu của S trên mặt phẳng A1A2An nên SO ⊥ A1A2An.

Xét tam giác SOA1 vuông tại O, có OA1=SA12SO2,

Xét tam giác SOA2 vuông tại O, có OA2=SA22SO2,

…..

Xét tam giác SOAn vuông tại O, có OAn=SAn2SO2.

Mà SA1 = SA2 = … = SAn nên OA1 = OA2 = … = OAn hay O là tâm đa giác đều A1A2An.

b) Nếu đa giác A1A2An là đều và O là tâm của đa giác đó thì OA1 = OA2 = … = OAn .

Vì O là hình chiếu của S trên mặt phẳng A1A2An nên SO ⊥ A1A2An.

Xét tam giác SOA1 vuông tại O, có SA1=OA12+SO2,

Xét tam giác SOA2 vuông tại O, có SA2=OA22+SO2,

…..

Xét tam giác SOAn vuông tại O, có SAn=OAn2+SO2.

Mà OA1 = OA2 = … = OAn nên SA1 = SA2 = … = SAn .

Vậy hình chóp S.A1A2An là hình chóp đều.

Luyện tập 5 trang 51 Toán 11 Tập 2: Cho hình chóp tam giác đều S.ABC, cạnh đáy bằng a, cạnh bên bằng a512. Tính số đo góc nhị diện [S, BC, A].

Lời giải:

Luyện tập 5 trang 51 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Gọi G là hình chiếu của S trên mặt phẳng (ABC).

Vì S.ABC là hình chóp tam giác đều nên G là trọng tâm của tam giác ABC.

Gọi AG cắt BC tại D mà ABC là tam giác đều nên AD ⊥ BC.

Mà SG ⊥ (ABC) nên SG ⊥ BC.

Vì AD ⊥ BC và SG ⊥ BC nên BC ⊥ (SAD), suy ra BC ⊥ SD.

Vì AD ⊥ BC và BC ⊥ SD nên SDA^là góc phẳng nhị diện của góc nhị diện [S, BC, A].

Vì ABC là tam giác đều cạnh a, AD là đường cao nên AD=a32.

Suy ra DG=13AD=13a32=a36.

Xét tam giác ABC có AD là trung tuyến nên D là trung điểm của BC, do đó BD=DC=BC2=a2.

Xét tam giác SBD vuông tại D có SD=SB2BD2=5a212a24=a6.

Xét tam giác SGD vuông tại G có cosSDA^=cosSDG^=GDSD=a36a6=22

SDG^=45°.

Vậy số đo góc nhị diện [S, BC, A] là 45°.

Xem thêm Lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:

Giải Toán 11 trang 44 Tập 2

Giải Toán 11 trang 45 Tập 2

Giải Toán 11 trang 46 Tập 2

Giải Toán 11 trang 47 Tập 2

Giải Toán 11 trang 48 Tập 2

Giải Toán 11 trang 49 Tập 2

Giải Toán 11 trang 50 Tập 2

Giải Toán 11 trang 51 Tập 2

Giải Toán 11 trang 52 Tập 2

Giải Toán 11 trang 53 Tập 2

1 179 30/11/2023


Xem thêm các chương trình khác: