Giải Toán 11 trang 32 Tập 1 Kết nối tri thức

Với giải bài tập Toán 11 trang 32 Tập 1 trong Bài 4: Phương trình lượng giác cơ bản sách Kết nối tri thức Tập 1 hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 trang 32 Tập 1.

1 267 22/03/2023


Giải Toán 11 trang 32 Tập 1

Luyện tập 1 trang 32 Toán 11 Tập 1: Xét sự tương đương của hai phương trình sau:

x1x+1=0 và x2 – 1 = 0.

Lời giải:

+) Ta có: x1x+1=0, điều kiện x ≠ – 1.

Khi đó, x1x+1=0 khi x – 1 = 0 hay x = 1 (thỏa mãn).

Vậy tập nghiệm của phương trình x1x+1=0 là S1 = {1}.

+) Phương trình x2 – 1 = 0 được viết lại thành (x – 1)(x + 1) = 0, từ đó ta tìm được x = 1 hoặc x = – 1, do đó tập nghiệm của phương trình x2 – 1 = 0 là S2 = {– 1; 1}.

+) Nhận thấy S1 ≠ S2, vậy hai phương trình đã cho không tương đương.

HĐ2 trang 32 Toán 11 Tập 1Nhận biết công thức nghiệm của phương trình sin x = 12

HĐ2 trang 32 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

a) Quan sát Hình 1.19, tìm các nghiệm của phương trình đã cho trong nửa khoảng [0; 2π).

b) Dựa vào tính tuần hoàn của hàm số sin, hãy viết công thức nghiệm của phương trình đã cho.

Lời giải:

a) Từ Hình 1.19, nhận thấy hai điểm M, M' lần lượt biểu diễn các góc π6 và ππ6=5π6, lại có tung độ của điểm M và M' đều bằng 12 nên theo định nghĩa giá trị lượng giác, ta có sinπ6=12 và sin5π6=12.

Vậy trong nửa khoảng [0; 2π), phương trình sinx=12 có hai nghiệm là x=π6x=5π6.

b) Vì hàm số sin có chu kì tuần hoàn là 2π nên phương trình đã cho có công thức nghiệm là x=π6+k2π,k và x=5π6+k2π,k.

Xem thêm lời giải bài tập Toán 11 sách Kết nối tri thức hay, chi tiết khác:

Giải Toán 11 trang 31 Tập 1

Giải Toán 11 trang 32 Tập 1

Giải Toán 11 trang 34 Tập 1

Giải Toán 11 trang 35 Tập 1

Giải Toán 11 trang 36 Tập 1

Giải Toán 11 trang 37 Tập 1

Giải Toán 11 trang 38 Tập 1

Giải Toán 11 trang 39 Tập 1

1 267 22/03/2023


Xem thêm các chương trình khác: