Giải Toán 11 trang 28 Chân trời sáng tạo

Với giải bài tập Toán 11 trang 28 trong Bài 4: Hàm số lượng giác và đồ thị sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 trang 28.

1 564 12/06/2023


Giải Toán 11 trang 28

Hoạt động khám phá 4 trang 28 Toán 11 Tập 1: Hoàn thành bảng giá trị sau đây và xác định các điểm tương ứng trên mặt phẳng tọa độ.

x

π

5π6

2π3

π2

π3

π6

0

π6

π3

π2

2π3

5π6

π

y = sinx

?

?

?

?

?

?

?

?

?

?

?

?

?

Lời giải:

Với x=π thì y=sinπ=sinπ=0. Ta có điểm A’(–π; 0).

Với x=5π6 thì y=sin5π6=12. Ta có điểm B'5π6;12

Với x=2π3 thì y=sin2π3=32. Ta có điểm C'2π3;32

Với x=π2 thì y=sinπ2=1. Ta có điểm D'π2;1

Với x=π3 thì y=sinπ3=32. Ta có điểm E'π3;32

Với x=π6 thì y=sinπ6=12. Ta có điểm F'π6;32

Với x=0 thì y=sin0=0. Ta có điểm O(0; 0).

Với x=π6 thì y=sinπ6=12. Ta có điểm Fπ6;32.

Với x=π3 thì y=sinπ3=32. Ta có điểm Eπ3;32.

Với x=π2 thì y=sinπ2=1. Ta có điểm Dπ2;1.

Với x=2π3 thì y=sin2π3=32. Ta có điểm C2π3;32.

Với x=π thì y=sin5π6=12. Ta có điểm B5π6;12.

Với x=π thì y=sinπ=sinπ=0. Ta có điểm A(π; 0).

Khi đó ta có bảng:

x

π

5π6

2π3

π2

π3

π6

0

π6

π3

π2

2π3

5π6

π

y = sinx

0

12

32

– 1

32

12

0

12

32

1

32

12

0

Biểu diễn các điểm trên trên mặt phẳng tọa độ ta được:

Hoạt động khám phá 4 trang 28 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Hoạt động khám phá 5 trang 28 Toán 11 Tập 1: Hoàn thành bảng giá trị sau đây và xác định các điểm tương ứng trên mặt phẳng tọa độ.

x

π

5π6

2π3

π2

π3

π6

0

π6

π3

π2

2π3

5π6

π

y = sinx

?

?

?

?

?

?

?

?

?

?

?

?

?

Lời giải:

Với x = π thì y = cos(π) = -1. Ta có điểm A’(–π; – 1).

Với x = 5π6 thì y = cos5π6=32. Ta có điểm B'5π6;32.

Với x = 2π3 thì y=cos2π3=12. Ta có điểm C'2π3;12.

Với x = π2 thì y = cosπ2=0. Ta có điểm D'π2;0.

Với x = π3 thì y = cosπ3=12. Ta có điểm E'π3;12.

Với x = π6 thì y = cosπ6=32. Ta có điểm F'π6;32.

Với x = 0 thì y = cos0 = 1. Ta có điểm I(0; 1).

Với x = π6 thì y = cosπ6=32. Ta có điểm Fπ6;32.

Với x = π3 thì y = cosπ6=32. Ta có điểm Fπ6;32.

Với x = π2 thì y = cosπ3=12. Ta có điểm Eπ3;12.

Với x = 2π3 thì y = cosπ2=0. Ta có điểm Dπ2;0.

Với x = 5π6 thì y = cos5π6=32. Ta có điểm B5π6;32.

Với x = π thì y=cosπ=cosπ=1. Ta có điểm A(π; – 1).

Khi đó ta có bảng:

x

π

5π6

2π3

π2

π3

π6

0

π6

π3

π2

2π3

5π6

π

y = cosx

– 1

32

12

0

12

-32

0

32

12

0

12

32

–1

Biểu diễn các điểm trên trên mặt phẳng tọa độ ta được:

Hoạt động khám phá 5 trang 28 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Xem thêm lời giải bài tập Toán 11 Chân trời sáng tạo hay, chi tiết khác: 

Giải Toán 11 trang 25

Giải Toán 11 trang 26

Giải Toán 11 trang 27

Giải Toán 11 trang 28

Giải Toán 11 trang 30

Giải Toán 11 trang 31

Giải Toán 11 trang 32

Giải Toán 11 trang 33

1 564 12/06/2023


Xem thêm các chương trình khác: