Giải Toán 11 trang 24 Tập 2 Kết nối tri thức

Với giải bài tập Toán 11 trang 24 Tập 2 trong Bài 21: Phương trình, bất phương trình mũ và lôgarit sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 trang 24 Tập 2.

1 286 26/11/2023


Giải Toán 11 trang 24 Tập 2

Luyện tập 4 trang 24 Toán 11 Tập 2: Giải các bất phương trình sau:

a) log17x+1>log72x;

b) 2log(2x + 1) > 3.

Lời giải:

a) log17x+1>log72x

Luyện tập 4 trang 24 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Bất phương trình đã cho tương đương với log71x+1>log72x

⇔ – log(x + 1) > log7(2 – x)

⇔ log7(x + 1)– 1 > log7(2 – x)

⇔ (x + 1)– 1 > 2 – x (do 7 > 1).

1x+12+x>0

1+x2x+1x+1>0

x2x1x+1>0 (*)

Mà – 1 < x < 2 nên x + 1 > 0, do đó (*) ⇔ x2 – x – 1 > 0 Luyện tập 4 trang 24 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Kết hợp với điều kiện ta được Luyện tập 4 trang 24 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Vậy tập nghiệm của bất phương trình đã cho là S=1;1521+52;2.

b) 2log(2x + 1) > 3

Điều kiện: 2x + 1 > 0 ⇔ x > 12.

Bất phương trình đã cho tương đương với log2x+1>32

2x+1>10322x>1031x>101012.

Kết hợp với điều kiện, vậy tập nghiệm của bất phương trình đã cho là S=101012;+.

Vận dụng trang 24 Toán 11 Tập 2: Áp suất khí quyển p (tính bằng kilôpascan, viết tắt là kPa) ở độ cao h (so với mực nước biển, tính bằng km) được tính theo công thức sau:

lnp100=h7.

(Theo britannica.com)

a) Tính áp suất khí quyển ở độ cao 4 km.

b) Ở độ cao trên 10 km thì áp suất khí quyển sẽ như thế nào?

Lời giải:

a) Ở độ cao 4 km, tức h = 4, thay vào công thức đã cho ta được

lnp100=47p100=e47p=100e4756,47.

Vậy áp suất khí quyển ở độ cao 4 km khoảng 56,47 kPa.

b) Ở độ cao trên 10 km, tức h > 10, khi đó ta có

lnp100=h7<1070<p100<e1070<p<100e10723,97.

Vậy ở độ cao trên 10 km thì áp suất khí quyển nhỏ hơn 23,97 kPa.

Bài tập

Bài 6.20 trang 24 Toán 11 Tập 2: Giải các phương trình sau:

a) 3x – 1 = 27;

b) 1002x23=0,12x218;

c) 3e3x=1;

d) 5x = 32x – 1.

Lời giải:

a) 3x – 1 = 27

⇔ 3x – 1 = 33

⇔ x – 1 = 3

⇔ x = 4

Vậy phương trình đã cho có nghiệm duy nhất là x = 4.

b) 1002x23=0,12x218

1022x23=1012x218

104x26=102x2+18

⇔ 4x2 – 6 = – 2x2 + 18

⇔ 6x2 = 24

⇔ x2 = 4

⇔ x = ± 2.

Vậy tập nghiệm của phương trình đã cho là S = {– 2; 2}.

c) 3e3x=1

e3x=13

3x=ln13

x=13ln312

x=16ln3.

Vậy phương trình đã cho có nghiệm duy nhất là x=16ln3.

d) 5x = 32x – 1

Lấy lôgarit cơ số 3 hai vế của phương trình ta được

log35x = log332x – 1

⇔ x log35 = 2x – 1

⇔ (2 – log35)x = 1

⇔ x = 12log35.

Vậy phương trình đã cho có nghiệm duy nhất là x = 12log35.

Bài 6.21 trang 24 Toán 11 Tập 2: Giải các phương trình sau:

a) log(x + 1) = 2;

b) 2log4x + log2(x – 3) = 2;

c) lnx + ln(x – 1) = ln4x;

d) log3(x2 – 3x + 2) = log3(2x – 4).

Lời giải:

a) log(x + 1) = 2

Điều kiện: x + 1 > 0 ⇔ x > – 1.

Phương trình đã cho tương đương với x + 1 = 102 ⇔ x = 100 – 1 ⇔ x = 99 (t/m).

Vậy phương trình đã cho có nghiệm duy nhất x = 99.

b) 2log4x + log2(x – 3) = 2

Bài 6.21 trang 24 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Ta có 2log4x + log2(x – 3) = 2

2log22x+log2x3=2

212log2x+log2x3=2

⇔ log2x + log2(x – 3) = 2

⇔ log2x(x – 3) = 2

⇔ x(x – 3) = 22

⇔ x2 – 3x – 4 = 0

⇔ x = – 1 hoặc x = 4.

Kết hợp với điều kiện, vậy phương trình đã cho có nghiệm duy nhất x = 4.

c) lnx + ln(x – 1) = ln4x

Bài 6.21 trang 24 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Ta có: lnx + ln(x – 1) = ln4x

⇔ lnx(x – 1) = ln4x

⇔ x(x – 1) = 4x

⇔ x2 – 5x = 0

⇔ x(x – 5) = 0

⇔ x = 0 hoặc x = 5.

Kết hợp với điều kiện, vậy phương trình đã cho có nghiệm duy nhất x = 5.

d) log3(x2 – 3x + 2) = log3(2x – 4)

Bài 6.21 trang 24 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Phương trình đã cho tương đương với

x2 – 3x + 2 = 2x – 4

⇔ x2 – 5x + 6 = 0

⇔ x = 2 hoặc x = 3.

Kết hợp với điều kiện, vậy phương trình đã cho có nghiệm duy nhất x = 3.

Bài 6.22 trang 24 Toán 11 Tập 2: Giải các bất phương trình sau:

a) 0,12 – x > 0,14 + 2x;

b) 2 . 52x + 1 ≤ 3;

c) log3(x + 7) ≥ – 1;

d) log0,5(x + 7) ≥ log0,5(2x – 1).

Lời giải:

a) 0,12 – x > 0,14 + 2x

⇔ 2 – x < 4 + 2x (do 0 < 0,1 < 1)

⇔ 3x > – 2

⇔ x > 23.

Vậy tập nghiệm của bất phương trình đã cho là S=23;+.

b) 2 . 52x + 1 ≤ 3

52x+132

2x+1log532

x12log5321

x12log532log55

x12log5310

xlog531012

xlog53010.

Vậy tập nghiệm của bất phương trình đã cho là S=;log53010.

c) log3(x + 7) ≥ – 1

Điều kiện: x + 7 > 0 ⇔ x > – 7.

Ta có: log3(x + 7) ≥ – 1

⇔ x + 7 ≥ 3– 1

⇔ x ≥ 137

x203.

Kết hợp với điều kiện, vậy tập nghiệm của bất phương trình đã cho là S=203;+.

d) log0,5(x + 7) ≥ log0,5(2x – 1)

Bài 6.22 trang 24 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Ta có: log0,5(x + 7) ≥ log0,5(2x – 1)

⇔ x + 7 ≤ 2x – 1 (do 0 < 0,5 < 1)

⇔ x ≥ 8.

Kết hợp với điều kiện, vậy tập nghiệm của bất phương trình đã cho là S = [8; + ∞).

Bài 6.23 trang 24 Toán 11 Tập 2: Bác Minh gửi tiết kiệm 500 triệu đồng ở một ngân hàng với lãi suất không đổi 7,5% một năm theo thể thức lãi kép kì hạn 12 tháng. Tổng số tiền bác Minh thu được (cả vốn lẫn lãi) sau n năm là:

A = 500 ∙ (1 + 0,075)n (triệu đồng).

Tính thời gian tối thiểu gửi tiết kiệm để bác Minh thu được ít nhất 800 triệu đồng (cả vốn lẫn lãi).

Lời giải:

Số tiền bác Minh nhận được sau n năm gửi tiết kiệm là

A = 500 ∙ (1 + 0,075)n = 500 ∙ 1,075n (triệu đồng).

Để có được 800 triệu đồng thì A = 800

⇔ 500 ∙ 1,075n = 800 ⇔ 1,075n = 1,6 ⇔ n = log1,0751,6 ≈ 6,5.

Vậy sau khoảng 7 năm gửi tiết kiệm thì bác An thu được ít nhất 800 triệu đồng (cả vốn lẫn lãi).

Bài 6.24 trang 24 Toán 11 Tập 2: Số lượng vi khuẩn ban đầu trong một mẻ nuôi cấy là 500 con. Người ta lấy một mẫu vi khuẩn trong mẻ nuôi cấy đó, đếm số lượng vi khuẩn và thấy rằng tỉ lệ tăng trưởng vi khuẩn là 40% mỗi giờ. Khi đó số lượng vi khuẩn N(t) sau t giờ nuôi cấy được ước tính bằng công thức sau:

N(t) = 500e0,4t.

Hỏi sau bao nhiêu giờ nuôi cấy, số lượng vi khuẩn vượt mức 80 000 con?

Lời giải:

Số lượng vi khuẩn vượt mức 80 000 con khi N(t) > 80 000

⇔ 500e0,4t > 80 000 ⇔ e0,4t > 160 ⇔ 0,4t > ln160 ⇔ t > 52ln160 ≈ 12,69.

Vậy sau khoảng 12,69 giờ nuôi cấy, số lượng vi khuẩn vượt mức 80 000 con.

Bài 6.25 trang 24 Toán 11 Tập 2: Giả sử nhiệt độ T (℃)của một vật giảm dần theo thời gian cho bởi công thức: T = 25 + 70e– 0,5t, trong đó thời gian t được tính bằng phút.

a) Tìm nhiệt độ ban đầu của vật.

b) Sau bao lâu nhiệt độ của vật còn lại 30 ℃.

Lời giải:

a) Nhiệt độ ban đầu T0 của vật ứng với nhiệt độ tại thời điểm t = 0, từ đó ta được

T0 = 25 + 70e– 0,5 ∙ 0 = 95 (℃).

Vậy nhiệt độ ban đầu của vật là 95 ℃.

b) Nhiệt độ của vật còn lại 30 ℃, tức T = 30, khi đó t thỏa mãn phương trình

25 + 70e– 0,5t = 30 e0,5t=1140,5t=ln114t=2ln1145,28.

Vậy sau khoảng 5,28 phút nhiệt độ của vật còn lại 30 ℃.

Bài 6.26 trang 24 Toán 11 Tập 2: Tính nồng độ ion hydrogen (tính bằng mol/lít) của một dung dịch có độ pH là 8.

Lời giải:

Ta có: pH = – log[H+] = 8. Suy ra [H+] = 10– 8 (mol/lít).

Vậy nồng độ ion hydrogen của dung dịch có độ pH là 8 là 10– 8 mol/lít.

Xem thêm Lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:

Giải Toán 11 trang 20 Tập 2

Giải Toán 11 trang 21 Tập 2

Giải Toán 11 trang 22 Tập 2

Giải Toán 11 trang 23 Tập 2

Giải Toán 11 trang 24 Tập 2

1 286 26/11/2023


Xem thêm các chương trình khác: