Giải Toán 11 trang 14 Tập 1 Kết nối tri thức

Với giải bài tập Toán 11 trang 14 Tập 1 trong Bài 1: Giá trị lượng giác của góc lượng giác sách Kết nối tri thức Tập 1 hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 trang 14 Tập 1.

1 213 21/03/2023


Giải Toán 11 trang 14 Tập 1

Luyện tập 7 trang 14 Toán 11 Tập 1Tính các giá trị lượng giác của góc α, biết: cos α = 23 và π<α<3π2.

Lời giải:

Vì π<α<3π2 nên sin α < 0. Mặt khác, từ sin2 α + cos2 α = 1 suy ra

sinα=1cos2α=1232=53.

Do đó, tanα=sinαcosα=5323=52 và cotα=1tanα=152=25=255.

HĐ7 trang 14 Toán 11 Tập 1Nhận biết mối liên hệ giữa giá trị lượng giác của các góc đối nhau

Xét hai điểm M, N trên đường tròn lượng giác xác định bởi hai góc đối nhau (H1.12a).

HĐ7 trang 14 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

a) Có nhận xét gì về vị trí của hai điểm M, N đối với hệ trục Oxy. Từ đó rút ra liên hệ giữa: cos (– α) và cos α; sin (– α) và sin α.

b) Từ kết quả HĐ6a, rút ra liên hệ giữa: tan (– α) và tan α; cot (– α) và cot α.

Lời giải:

a) Giả sử M(xM; yM), N(xN; yN). 

Từ Hình 1.12a, ta thấy hai điểm M và N đối xứng với nhau qua trục hoành Ox, do đó ta có: xM = xN và yM = – yN.

Theo định nghĩa giá trị lượng giác của một góc, ta lại có:

cos α = xM và cos (– α) = xN. Suy ra cos (– α) = cos α.

sin α = yM và sin (– α) = yN. Suy ra sin α = – sin (– α) hay sin (– α) = – sin α.

b) Ta có: tanα=sinαcosα=sinαcosα=sinαcosα=tanα;

cotα=cosαsinα=cosαsinα=cosαsinα=cotα.

Vậy tan (– α) = – tan α; cot (– α) = – cot α.

Xem thêm lời giải bài tập Toán 11 sách Kết nối tri thức hay, chi tiết khác:

Giải Toán 11 trang 5 Tập 1

Giải Toán 11 trang 7 Tập 1

Giải Toán 11 trang 8 Tập 1

Giải Toán 11 trang 9 Tập 1

Giải Toán 11 trang 10 Tập 1

Giải Toán 11 trang 11 Tập 1

Giải Toán 11 trang 12 Tập 1

Giải Toán 11 trang 13 Tập 1

Giải Toán 11 trang 14 Tập 1

Giải Toán 11 trang 15 Tập 1

Giải Toán 11 trang 16 Tập 1

1 213 21/03/2023


Xem thêm các chương trình khác: