Giải Toán 10 trang 46 Tập 2 Kết nối tri thức

Với giải bài tập Toán lớp 10 trang 46 Tập 2 trong Bài 21: Đường tròn trong mặt phẳng tọa độ sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 46 Tập 2.

1 1,710 10/02/2023


Giải Toán 10 trang 46 Tập 2

Hoạt động 2 trang 46 Toán 10 Tập 2:

Cho đường tròn (C) : (x – 1)2 + (y – 2)2 = 25 và điểm M(4; –2)

a) Chứng minh điểm M(4; –2) thuộc đường tròn (C)

b) Xác định tâm và bán kính của (C)

c) Gọi ∆ là tiếp tuyến của (C) tại M. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng ∆ (H.7.16) . Từ đó, viết phương trình đường thẳng ∆

Giải Toán 10 Bài 21 (Kết nối tri thức): Đường tròn trong mặt phẳng tọa độ (ảnh 1) 

Lời giải:

a) Thay toạ độ điểm M vào phương trình đường tròn ta được :

(4 – 1)2 + (– 2 – 2)2 = 15

32 + (– 4)2 = 25

 25 = 25 (luôn đúng).

Vậy điểm M(4; –2) thuộc đường tròn (C).

b) Đường tròn (C) : (x – 1)2 + (y – 2)2 = 25 có tâm I(1; 2) và bán kính R = 5.

c) Vì ∆ là tiếp tuyến của (C) tại M nên IM  ∆, do đó: đường thẳng ∆ có vectơ pháp tuyến là IM= ( 3; –4)

Vậy phương trình đường thẳng ∆ đi qua điểm M(4; –2) và có vectơ pháp tuyến IM= ( 3; –4) là: 3(x – 4) – 4(y + 2) = 0 hay 3x – 4y – 20 = 0.

Luyện tập 4 trang 46 Toán 10 Tập 2

Cho đường tròn (C) : x2 + y2 – 2x + 4y + 1 = 0. Viết phương trình tiếp tuyến ∆ của (C) tại điểm N(1; 0).

Lời giải

Thay tọa độ điểm N vào phương trình đường tròn (C), ta được:

 12 + 02 – 2.1 + 4.0 + 1 = 0  0 = 0.

Suy ra điểm N thuộc (C).

Với phương trình đường tròn (C) : x2 + y2 – 2x + 4y + 1 = 0 ta có a = 1; b = –2 ; c = 1

Nên tâm I(1; –2)

Ta có: IN= (0; 2)

Tiếp tuyến ∆ của (C) tại điểm N(1; 0) và nhận IN= (0; 2) là vectơ pháp tuyến nên phương trình tiếp tuyến ∆ là: 0(x – 1) + 2(y – 0) = 0 hay y = 0.

Vậy phương trình tiếp tuyến ∆ của đường tròn (C) là: y = 0

B. Bài tập

Bài 7.13 trang 46 Toán 10 Tập 2:

Tìm tâm và bán kính của đường tròn (x + 3)2 + (y – 3)2 = 36

Lời giải

Tâm I(-3; 3) và bán kính R = 6

Bài 7.14 trang 46 Toán 10 Tập 2:

Hãy cho biết phương trình nào dưới đây là phương trình của một đường tròn và tìm tâm, bán kính của đường tròn tương ứng,

a) x2 + y2 + xy + 4x – 2 = 0

b) x2 + y2 – 2x – 4y + 5 = 0

c) x2 + y2 + 6x – 8y + 1 = 0

Lời giải

a) x2 + y2 + xy + 4x – 2 = 0

Vì phương trình chứa tích xy nên phương trình x2 + y2 + xy + 4x – 2 = 0 không là phương trình đường tròn.

b) x2 + y2 – 2x – 4y + 5 = 0 x2 – y2 – 2.1x – 2.2y + 5 = 0

Ta có: a = 1; b = 2; c = 5

Xét a2 + b2 – c = 12 + 22 – 5 = 0 nên phương trình x2 + y2 – 2x – 4y + 5 = 0 không là phương trình đường tròn.

c) x2 + y2 + 6x – 8y + 1 = 0 x2 + y2 – 2.(–3)x – 2.4y + 1 = 0

Ta có: a = –3; b = 4; c = 1

Xét a2 + b2 – c = (–3)2 + 42 – 1 = 24 > 0 nên phương trình x2 + y2 + 6x – 8y + 1 = 0 là phương trình đường tròn có tâm I(3; 4) và bán kính R = 24

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:

Giải Toán 10 trang 43 Tập 2

Giải Toán 10 trang 44 Tập 2

Giải Toán 10 trang 45 Tập 2

Giải Toán 10 trang 46 Tập 2

Giải Toán 10 trang 47 Tập 2

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:

Bài 22: Ba đường Conic

Bài tập cuối chương 7

Bài 23: Quy tắc đếm

Bài 24: Hoán vị, chỉnh hợp và tổ hợp

Bài 25: Nhị thức Newton

1 1,710 10/02/2023


Xem thêm các chương trình khác: