Chuyên đề Số phức mới nhất - Toán 12
Với Chuyên đề Toán 12 Chương 4: Số phức mới nhất được biên soạn bám sát chương trình Toán lớp 12 giúp bạn học tốt môn Toán hơn.
Mục lục Chuyên đề Toán 12 Chương 4: Số phức
Chuyên đề Lý thuyết Cộng, trừ và nhân số phức
Chuyên đề Phương trình bậc hai với hệ số thực
Xem thêm các bài Chuyên đề Toán lớp 12 hay, chi tiết khác:
Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số
Chương 2: Hàm số lũy thừa, hàm số mũ, hàm số logarit
Chương 3: Nguyên hàm, tích phân và ứng dụng
Chương 3: Phương pháp tọa độ trong không gian
----------------------------------------------------------
Chuyên đề Số phức - Toán 12
A. Lý thuyết
1. Số i.
Số i là số thỏa mãn: i2 = –1.
2. Định nghĩa số phức
Mỗi biểu thức dạng a + bi , trong đó ; i2 = –1 được gọi là một số phức.
Đối với số phức z = a + bi, ta nói: a là phần thực, b là phần ảo của z.
Tập hợp các số phức kí hiệu là C.
Ví dụ 1. Các số sau là những số phức: 2 – 3i; –8 + 4i;
Ví dụ 2. Số phức 6 – i có phần thực là 6, phần ảo là – 1.
3. Số phức bằng nhau
– Định nghĩa : Hai số phức bằng nhau nếu phần thực và phần ảo của chúng tương ứng bằng nhau :
a + bi = c + di a = c và b = d.
Ví dụ 3. Tìm các số thực x và y biết :
(2x – 1) + (y – 2)i = 3 + (4 – y)i
Lời giải:
Ta có : (2x – 1) + (y – 2)i = 3 + (4 – y)i
Vậy x = 2 và y = 3.
– Chú ý :
a) Mỗi số thực a được coi là một số phức với phần ảo bằng 0: a = a + 0i.
Như vậy, mỗi số thực cũng là một số phức. Ta có : .
b) Số phức 0 + bi được gọi là số thuần ảo và viết đơn giản là bi : bi = 0 + bi
Đặc biệt : i = 0 + 1.i
Số i được gọi là đơn vị ảo.
Ví dụ 4. Số phức z có phần thực là và phần ảo là là .
4. Biểu diễn hình học số phức
Điểm M(a ; b) trong một hệ tọa độ vuông góc của mặt phẳng được gọi là điểm biểu diễn số phức z = a + bi.
Ví dụ 5.
Điểm A biểu diễn số phức 2 – 2i
Điểm B biểu diễn số phức 4.
Điểm C biểu diễn số phức – 2.
Điểm D biểu diễn số phức 2 + 3i.
Điểm E biểu diễn số phức 2.
Điểm F biểu diễn số phức – 3 + 2i.
Điểm G biểu diễn số phức –2 – 3i.
5. Mô đun của số phức.
Giả sử số phức z = a + bi được biểu diễn bởi điểm M(a ; b) trên mặt phẳng tọa độ.
Độ dài của vecto được gọi là môđun của số phức z và kí hiệu là |z|.
Vậy hay .
Ta thấy:
Ví dụ 6.
6. Số phức liên hợp
– Định nghĩa : Cho số phức z = a + bi. Ta gọi a – bi là số phức liên hợp của z và kí hiệu là .
Ví dụ 7.
Nếu z = – 3 + 5i thì .
Nếu z = – 4 + 4i thì .
– Nhận xét :
+ Trên mặt phẳng tọa độ các điểm biểu diễn z và đối xứng nhau qua trục Ox.
+ Từ định nghĩa ta có: .
B. Bài tập
I. Bài tập trắc nghiệm
Bài 1: Môđun của số phức z = -3 + 4i là
A. 5
B. -3
C. 4
D. 7
Lời giải:
Ta có: z = -3 + 4i
Bài 2: Môđun của số phức z = 2 - i là
A.
B. 2 +
C. 2 -
D. 7
Lời giải:
Ta có: z = 2 - i
Bài 3: Số phức z = 1 - 2i có điểm biểu diễn là
A. M (1; 2)
B. M (1; -2)
C. M (-1; 2)
D. M (-1; -2)
Lời giải:
Số phức z = 1 - 2i có điểm biểu diễn là M(1; -2).
Bài 4: Hai điểm biểu diễn hai số phức liên hợp z = 1 + i và z− = 1 - i đối xứng nhau qua
A. Trục tung
B. Trục hoành
C. Gốc tọa độ
D. Điểm I (1; -1)
Lời giải:
Hai điểm biểu diễn của z = 1 + i và z− = 1 - i là M(1; 1) và N(1; -1) đối xứng với nhau qua trục Ox.
Bài 5: Tập hợp các điểm biểu diễn số phức z thỏa mãn |z| = 2 là
A. Hai đường thẳng
B. Đường tròn bán kính bằng 2
C. Đường tròn bán kính bằng 4
D. Hình tròn bán kính bằng 2.
Lời giải:
Gọi M là diểm biểu diễn của z. Ta có: |z| = 2 ⇔ OM = 2
Vậy quỹ tích của M là đường tròn tâm là gốc tọa độ O và bán kính R = 2.
Bài 6: Gọi A, B là các điểm biểu diễn của các số phức z1 = -1 + 2i, z2 = 2 + 3i . Khi đó, độ dài đoạn thẳng AB là
A.
B. +
C.
D. 10
Lời giải:
Ta có: A(-1;2), B(2,3). Do đó:
Xem thêm các chương trình khác:
- Giải sgk Hóa học 12 (sách mới) | Giải bài tập Hóa 12
- Lý thuyết Hóa học 12
- Giải sbt Hóa học 12
- Các dạng bài tập Hoá học lớp 12
- Giáo án Hóa học lớp 12 mới nhất
- Tóm tắt tác phẩm Ngữ văn 12
- Soạn văn 12 (hay nhất) | Để học tốt Ngữ văn 12 (sách mới)
- Soạn văn 12 (ngắn nhất)
- Tác giả tác phẩm Ngữ văn lớp 12
- Văn mẫu lớp 12
- Giải sgk Sinh học 12 (sách mới) | Giải bài tập Sinh học 12
- Lý thuyết Sinh học 12 | Kiến thức trọng tâm Sinh 12
- Giải sgk Địa Lí 12 (sách mới) | Giải bài tập Địa lí 12
- Lý thuyết Địa Lí 12
- Giải Tập bản đồ Địa Lí 12
- Giải sgk Vật Lí 12 (sách mới) | Giải bài tập Vật lí 12
- Giải sbt Vật Lí 12
- Lý thuyết Vật Lí 12
- Các dạng bài tập Vật lí lớp 12
- Giáo án Vật lí lớp 12 mới nhất
- Giải sgk Lịch sử 12 (sách mới) | Giải bài tập Lịch sử 12
- Giải Tập bản đồ Lịch sử 12
- Lý thuyết Lịch sử 12
- Giải sgk Giáo dục công dân 12
- Lý thuyết Giáo dục công dân 12
- Giải sgk Giáo dục quốc phòng - an ninh 12 (sách mới) | Giải bài tập GDQP 12
- Lý thuyết Giáo dục quốc phòng 12 | Kiến thức trọng tâm GDQP 12
- Lý thuyết Tin học 12
- Lý thuyết Công nghệ 12