Chuyên đề Tích phân (2022) - Toán 12

Với Chuyên đề Tích phân (2022) - Toán 12 mới nhất được biên soạn bám sát chương trình Toán 12 giúp các bạn học tốt môn Toán hơn.

1 743 14/09/2022
Tải về


Chuyên đề Tích phân - Toán 12

A. Lý thuyết

I. Khái niệm tích phân

1. Diện tích hình thang cong

- Cho hàm số y = f(x) liên tục, không đổi dấu trên đoạn [a; b]. Hình phẳng giới hạn bởi đồ thị của hàm số y = f(x), trục hoành và hai đường thẳng x = a; x = b được gọi là hình thang cong.

Lý thuyết Tích phân chi tiết – Toán lớp 12 (ảnh 1)

Ta xét bài toán tìm diện tích hình thang cong bất kì:

Cho hình thang cong giới hạn bởi các đường thẳng x = a; x = b (a < b); trục hoành và đường cong y = f(x),  trong đó f(x) là hàm số liên tục, không âm trên đoạn [a; b].

Với mỗi xa;b, kí hiệu S(x) là diện tích của phần hình thang cong đó nằm giữa hai đường thẳng vuông góc với Ox lần lượt tại a và b.

Lý thuyết Tích phân chi tiết – Toán lớp 12 (ảnh 1)

Ta chứng minh được S(x) là một nguyên hàm của f(x) trên đoạn [a; b].

Giả sử F(x) cũng là một nguyên hàm của f(x) thì có một hằng số C sao cho S(x) = F(x) +  C.

Vì S(a) = 0 nên F(a) +  C = 0  hay C =  –  F(a).

Vậy S(x) = F(x) – F(a).

Thay x = b vào đẳng thức trên, ta có diện tích của hình thang cần tìm là:

S(b) = F(b) – F(a).

2. Định nghĩa tích phân

Cho f(x) là hàm số liên tục trên đoạn [a; b]. Giả sử F(x) là một nguyên hàm của f(x) trên đoạn [a; b].

Hiệu số F(b) – F(a) được gọi là tích phân từ a đến b (hay tích phân xác định trên đoạn [a; b]) của hàm số f(x), kí hiệu abf(x)dx

Ta còn dùng kí hiệu F(x)ab để chỉ hiệu số F(b) – F(a).

Vậy abf(x)dx=F(x)ab=F(b)-F(a)

Ta gọi ab là dấu tích phân, a là cận dưới, b là cận trên, f(x)dx là biểu thức dưới dấu tích phân và f(x) là hàm số dưới dấu tích phân.

- Chú ý.

Trong trường hợp a = b hoặc a > b, ta quy ước:

aaf(x)dx=0;abf(x)dx=baf(x)dx

Ví dụ 1.

a) 02(x+2)dx

=x22  +  2x02=60=6

b) 0π2(2+​ cosx)dx

=2x+​  sinx0π2=(π+1)0=π+1

- Nhận xét.

a) Tích phân của hàm số f từ a đến b có thể kí hiệu là abf(x)dx hay abf(t)dt. Tích phân đó chỉ phụ thuộc vào f và các cận a, b mà không phụ thuộc vào biến x hay t.

b) Ý nghĩa hình học của tích phân.

Nếu hàm số f(x) liên tục và không âm trên đoạn [a; b] thì tích phân abf(x)dx là diện tích S của hình thang cong giới hạn bởi đồ thị của f(x), trục Ox và hai đường thẳng x = a; x = b. Vậy S​ =  abf(x)dx.

II. Tính chất của tích phân.

Lý thuyết Tích phân chi tiết – Toán lớp 12 (ảnh 1)

Ví dụ 2. Tính: 0π(3x4sinx)dx.

Lời giải:

Lý thuyết Tích phân chi tiết – Toán lớp 12 (ảnh 1)

- Tính chất 3.

 abf(x)dx=acf(x)dx  +​  cbf(x)dx (a < c < b).

Ví dụ 3. Tính 22xdx.

Lời giải:

Lý thuyết Tích phân chi tiết – Toán lớp 12 (ảnh 1)

III. Phương pháp tính tích phân

1. Phương pháp đổi biến số

- Định lí:

Cho hàm số f(x) liên tục trên đoạn [a; b]. Giả sử hàm số x=  φ(t) có đạo hàm liên tục trên đoạn α;  β sao cho φ(α)=a;  φ(β)=b và aφ(t)b  tα;β.

Khi đó: abf(x)dx=αβfφ(t).φ'(t)dt

Ví dụ 4.  Tính 011x2dx.

Lời giải:

Lý thuyết Tích phân chi tiết – Toán lớp 12 (ảnh 1)

- Chú ý:

Trong nhiều trường hợp ta còn sử dụng phép đổi biến số ở dạng sau:

Cho hàm số f(x) liên tục trên đoạn [a; b]. Để tính abf(x)dx, đôi khi ta chọn hàm số u = u(x) làm biến số mới, trong đó trên đoạn [a; b], u(x) có đạo hàm liên tục và u(x)α;  β.

Giả sử có thể viết: f(x) = g(u(x)). u’(x) với xa;  b với g(u) liên tục trên đoạn α;  β

Khi đó, ta có: abf(x)dx=u(a)u(b)g(u)du

Ví dụ 5. Tính 0πx.sinx2dx

Lời giải:

Lý thuyết Tích phân chi tiết – Toán lớp 12 (ảnh 1)

2. Phương pháp tính tích phân từng phần

- Định lí.

Nếu u = u(x) và v = v(x) là hai hàm số có đạo hàm liên tục trên đoạn [a; b] thì:

abu(x).v'(x)dx=u(x).v(x)ab-abv(x).u'(x)dx

Hay abudv=uvababvdu

Ví dụ 6. Tính I=0π2xsinxdx.

Lời giải:

Lý thuyết Tích phân chi tiết – Toán lớp 12 (ảnh 1)

Ví dụ 7. Tính I=0e1xln(x+1)dx.

Lời giải:

Lý thuyết Tích phân chi tiết – Toán lớp 12 (ảnh 1)

B. Bài tập

I. Bài tập trắc nghiệm

Câu 1: Tích phân

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Ta chọn đáp án A

Câu 2: Cho hai tích phân:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Trong các khẳng định sau , khẳng định nào đúng?

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Đặt t = π/2 - x ⇒ dt = -dx Khi x = a thì t = π/2 - a , khi x = π/2 - a thì t = a

Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy chọn đáp án B.

Câu 3:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Đặt: t = 3 - x ⇒ dt = - dx .

Khi x = 0 thì t = 3, khi x = a thì t = 3-a.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy chọn đáp án B.

Câu 4: Tính tích phân

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

A. I = 0    

B. I = a2    

C. I = -a2    

D. I = 2a2 .

Lời giải:

Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy chọn đáp án B.

Câu 5: Tính tích phân Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Đặt t = lnx ⇒ dt = (1/x)dx . Khi x = 1 thì t = 0, khi x = 2e thì t = 1+ln2. Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy chọn đáp án D.

Câu 6: Tính tích phân

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Đặt u = x và dv = cos(a - x)dx ,suy ra du = dx và v = -sin(a-x). Do đó

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy chọn đáp án C.

Câu 7:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Khẳng định nào dưới đây là sai?

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Đặt u = x2 - 1 , ta có du = 2xdx. Khi x = 1 thì u = 0, x = 2 thì u = 3. Do đó

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy chọn đáp án C.

Câu 8:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Tìm n?

A.6    

B.5    

C.4    

D.3

Lời giải:

Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy chọn đáp án D.

Câu 9: Kết quả của tích phân

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

được viết dưới dạng a+bln2. Tính giá trị của a+b.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy chọn đáp án D

Câu 10: Giả sử

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Giá trị của K là:

A.9    

B.3   

C.81   

D.8

Lời giải:

Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Do đó, K = 3

II. Bài tập tự luận có lời giải

Câu 1: Cho:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Tính giá trị của a-b.

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Khi x = 1 thì t = e, khi x = e thì t = ee + 1 .

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Từ đó suy ra: a = 1; b = 1 nên a – b = 0.

Câu 2: Cho

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Giả sử đặt t = ex3 + 2 thì ta được:

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 ⇒(t - 2)3 = ex

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Đổi cận: x = 0 thì t = 3 ; x = 3ln2 thì t = 4

Khi đó

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 3: Cho

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Khi đó a+b bằng

Lời giải:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 4: Cho

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Đặt t = x2 . Biết

Lời giải:

Đặt t = x2 ⇒ dt = 2xdx. Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 5: Nếu

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

với a < d < b thì

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 6: Cho tích phân

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Nếu biến đổi số t = sin2x thì:

Lời giải:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 7: Tính

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 8:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 9:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Tìm n?

Lời giải:

Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 10: Kết quả của tích phân

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

được viết dưới dạng a+bln2. Tính giá trị của a+b.

Lời giải:

Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

III. Bài tập vận dụng 

Bài 1 Giả sử Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12Giá trị của K là?

Bài 2  Cho: Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 Tính giá trị của a-b.

Bài 3 Cho Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 Giả sử đặt t = ∛ex + 2 thì ta được?

Bài 4 ChoBài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12Khi đó a+b bằng?

Bài 5 ChoBài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 Đặt t = x2 . Biết Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 6 Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số y = (x -1)e2x ,trục tung và đường thẳng y = 0. Tính thể tích của khối tròn xoay thu được khi quay hình (H) quanh trục Ox

Bài 7 Cho tích phân Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12Nếu biến đổi số t = sin2x thì:

Bài 8 Tính tích phân Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 9 Viết công thức tính thể tích V của khối tròn xoay được tạo ra khi quay hình thang cong giới hạn bởi đồ thị hàm số y = f(x), trục Ox và hai đường thẳng x = a, x = b (a < b) quanh trục Ox.

Bài 10 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số x3 - x và đồ thị hàm số y = x - x2.

Xem thêm các bài Chuyên đề Toán lớp 12 hay, chi tiết khác:

Chuyên đề Nguyên hàm

Chuyên đề Ứng dụng hình học của tích phân

Chuyên đề Ôn tập chương 3

Chuyên đề Số phức

Chuyên đề Lý thuyết Cộng, trừ và nhân số phức

1 743 14/09/2022
Tải về