Chuyên đề Lý thuyết Cộng, trừ và nhân số phức (2022) - Toán 12
Với Chuyên đề Lý thuyết Cộng, trừ và nhân số phức (2022) - Toán 12 mới nhất được biên soạn bám sát chương trình Toán 12 giúp các bạn học tốt môn Toán hơn.
Chuyên đề Lý thuyết Cộng, trừ và nhân số phức - Toán 12
A. Lý thuyết
1. Phép cộng và phép trừ
– Phép cộng và phép trừ hai số phức được thực hiện theo quy tắc cộng, trừ đa thức.
– Tổng quát:
(a + bi) + (c + di) = (a + c) + (b + d).i
(a + bi) – (c + di) = (a – c) + (b – d).i
2. Phép nhân
– Phép nhân hai số phức được thực hiện theo quy tắc nhân hai đa thức, rồi thay i2 = – 1 vào kết quả.
– Tổng quát:
(a + bi).(c + di) = ac + adi + bci + bdi2 = ac + adi + bci – bd
Vậy (a + bi). (c + di) = (ac – bd) + (ad + bc).i
– Chú ý: Phép cộng và phép nhân số phức có tất cả các tính chất của phép cộng và phép nhân các số thực (giao hoán, kết hợp, cộng với 0, nhân với 1, tính chất phân phối,…).
B. Bài tập
I. Bài tập trắc nghiệm
Bài 1: Môđun của tổng hai số phức z1 = 3 - 4i và z2 = 4 + 3i là
A. 5
B. 8
C. 10
D. 50.
Lời giải:
Ta có: z1 + z2 = (3 + 4) + (-4 + 3)i = 7 - i
Bài 2: Cho z = -1 + 3i . Số phức w = iz− + 2z bằng
A. 1 + 5i
B. 1 + 7i
C. – 1 + 5i
D. – 1 + 7i
Lời giải:
Ta có: z = -1 + 3i => z− = -1 - 3i => iz− = - i - 3i2 = 3 - i
Suy ra: w = 2z + z− = 3 - i + 2(-1 + 3i) = 1 + 5i
Bài 3: Cho z = 1 + 2i . Phần thực và phần ảo của số phức w = 2z + z− là
A. 3 và 2
B. 3 và 2i
C. 1 và 6
D. 1 và 6i
Lời giải:
Ta có: w = 2z + z− = 2(1 + 2i) + (1 - 2i) = 3 + 2i
Vậy phần thực của w là 3, phần ảo của w là 2
Bài 4: Cho số phức z thỏa mãn (1 + 2i)z + iz− = 2i . Khi đó tích z.iz− bằng
A. – 2
B. 2
C. – 2i
D. 2i.
Lời giải:
Đặt z = a + bi(a, b ∈ R).
Suy ra z = 1 + i. Vậy z.z− = |z−|2 = 12 + 12 = 2
Bài 5: Môđun của số phức z thỏa mãn 2z + 3(1 - i)iz− = 1 - 9i là
A. 5
B. 13
C.
D.
Lời giải:
Đặt z = a + bi (a, b ∈ R). Ta có: z−
= a - bi và (1 - i)
= (1 - i)(a - bi)
= a - bi - ai + bi2
= a - b - (a + b)i
Do đó 2z + 3(1 - i)
= 1 - 9i <=> 2(a + bi) + 3[a - b - (a + b)i] = 1 - 9i
<=> (5a - 3b) - (3a + b)i = 1 - 9i
Suy ra z = 2 + 3i. Vậy:
Bài 6: Cho hai số phức z1, z2 thỏa mãn |z1| = |z2| = |z1 + z2| = 1 . Khi đó |z1 - z2| bằng
A. 0
B. 1
C. 2
D.
Lời giải:
Cách 1: Đặt z1 = a1 + bi, z2 = a2 + b2i (a1, a2, b1, b2 ∈ R). Ta có:
Cách 2: Ta có: |z1| = |z2| = 1 => z1z1− = z2z2− = 1
|z1| + |z2| = 1
Do đó
Vậy |z1| - |z2| =
Bài 7: Tập hợp các điểm biểu diễn số phức z thỏa mãn |z + 1 - 2i| = 2 là
A. Đường tròn tâm I(1; -2) bán kính R = 2
B. Đường tròn tâm I(1; -2) bán kính R = 4
C. Đường tròn tâm I(-1; 2) bán kính R = 2
D. Đường tròn tâm I(-1; 2) bán kính R = 4
Lời giải:
Đặt z = a + bi(a, b ∈ R). Ta có: z + 1 - 2i = (a + 1) + (b - 2)i. Do đó:
|z + 1 - 2i| = 2 <=> (a + 1)2 + (b - 2)2 = 4
Vậy tập hợp điểm M biểu diễn số phức z là đường tròn tâm I(-1 ;2), bán kính R = 2
Bài 8: Cho hai số phức z1 = 2 + 3i, z2 = 1 - 2i . Tìm khẳng định sai
A. z1 + z2 = 3 + i
B. z1 - z2 = 1 + 5i
C. z1.z2 = 8 - i
D.z1. z2 = 8 + i
Lời giải:
Tổng của z1 và z2 là z1 + z2 = (2 + 1) + (3 - 2)i = 3 + i
Hiệu của z1 và z2 là z1 - z2 = (2 - 1) + (3 + 2)i = 1 + 5i
Tích của z1 và z2 là z1. z2 = (2 + 3i)(1 - 2i) = 2 - 4i + 3i - 6i2 = 2 - i + 6 = 8 - i
Vậy chọn đáp án D.
Bài 9: Cho hai số phức z1= - 3 + 4i, z2 = 4 - 3i . Môđun của số phức z = z1 + z2 + z1. z2 là
A. 27
B.
C.
D. 677.
Lời giải:
Ta có
Do đó z = z1 + z2 + z1. z2 = 1 + i + 25i = 1 + 26i
Chọn đáp án C.
Bài 10: Tìm các số thực x, y sao cho: (1 - 2i)x + (1 + 2i)y = 1 + i
Lời giải:
Ta có
(1 - 2i)x + (1 + 2i)y = 1 + i <=> (x + y) + (2y - 2x)i = 1 + i
Chọn đáp án A.
II. Bài tập tự luận có lời giải
Bài 1: Phần thực và phần ảo của số phức z = (3 + 4i)(4 - 3i) + (2 - i)(3 + 2i) là?
Lời giải:
Ta có
z = (12 - 9i + 16i - 12i2) + (6 + 4i - 3i - 2i2) = (12 + 7i + 12) + (6 + i + 2) = 32 + 8i
Bài 2: Cho các số phức z1 = -1 + i, z2 = 1 - 2i, z3 = 1 + 2i . Giá trị của biểu thức T = |z1z2 + z2z3 + z3z1| là?
Lời giải:
Ta có:
z2z3 = (1 - 2i)(1 + 2i) = 1 - 4i2 = 5
z1z2 + z1z3 = z1(z2 + z3) = (-1 + i)(1 - 2i + 1 + 2i) = -2 + 2i
Suy ra
Bài 3: Tổng của hai số phức z1 = 1 - 2i, z2 = 2 - 3i là?
Lời giải:
Tổng của hai số phức z1 = 1 - 2i, z2 = 1 - 3i là z = (1 + 1) + (-2 - 3)i = 2 - 5i.
Bài 4: Cho hai số phức z1 = 2 + 3i, z2 = 2 - 4i . Hiệu z1 - z2 bằng?
Lời giải:
Hiệu của hai số phức z1 = 2 + 3i, z2 = 2 - 4i là z = (2 - 2) + (3 -(-4))i = 7i
Bài 5: Tích của hai số phức z1 = 3 + 2i, z2 = 2 - 3i là?
Lời giải:
Tích của hai số phức z1 = 3 + 2i, z2 = 2 - 3i là:
z = (3 + 2i)(2 - 3i) = 6 - 9i + 4i - 6i2 = 6 - 5i + 6 = 12 - 5i
Bài 6: Số phức z = (1 + i)2 bằng
Lời giải:
Ta có: z = (1 + i)2 = 1 + 2i + i2 = 1 + 2i - 1 = 2i
Bài 7: Số phức z = (1 - i)3 bằng?
Lời giải:
Ta có:
z = (1 - i)3 = 1 - 3i + 3i2 - i3
= 1 - 3i - 3.(-1) - i2i = 1 - 3i - 3 + i = -2 - 2i
Bài 8: Cho hai số phức z1 = 2 + 3i, z2 = 1 - 2i . Tìm khẳng định sai
A. z1 + z2 = 3 + i B. z1 - z2 = 1 + 5i
C. z1.z2 = 8 - i D.z1. z2 = 8 + i
Lời giải:
Tổng của z1 và z2 là z1 + z2 = (2 + 1) + (3 - 2)i = 3 + i
Hiệu của z1 và z2 là z1 - z2 = (2 - 1) + (3 + 2)i = 1 + 5i
Tích của z1 và z2 là z1. z2 = (2 + 3i)(1 - 2i) = 2 - 4i + 3i - 6i2 = 2 - i + 6 = 8 - i
Bài 9: Cho hai số phức z1= - 3 + 4i, z2 = 4 - 3i . Môđun của số phức z = z1 + z2 + z1. z2 là
Lời giải:
Ta có
Do đó z = z1 + z2 + z1. z2 = 1 + i + 25i = 1 + 26i
Bài 10: Tìm các số thực x, y sao cho: (1 - 2i)x + (1 + 2i)y = 1 + i
Lời giải:
Ta có
(1 - 2i)x + (1 + 2i)y = 1 + i <=> (x + y) + (2y - 2x)i = 1 + i
III. Bài tập vận dụng
Bài 1 Phần thực và phần ảo của số phức z = (3 + 4i)(4 - 3i) + (2 - i)(3 + 2i) là?
Bài 2 Cho các số phức z1 = -1 + i, z2 = 1 - 2i, z3 = 1 + 2i . Giá trị của biểu thức T = |z1z2 + z2z3 + z3z1| là?
Bài 3 Tổng của hai số phức z1 = 1 - 2i, z2 = 2 - 3i là?
Bài 4 Cho hai số phức z1 = 2 + 3i, z2 = 2 - 4i . Hiệu z1 - z2 bằng?
Bài 5 Tích của hai số phức z1 = 3 + 2i, z2 = 2 - 3i là?
Bài 6 Số phức z = (1 + i)2 bằng?
Bài 7 Số phức z = (1 - i)3 bằng?
Bài 8 Môđun của tổng hai số phức z1 = 3 - 4i và z2 = 4 + 3i là?
Bài 9 Cho z = -1 + 3i . Số phức w = iz− + 2z bằng?
Bài 10 Cho z = 1 + 2i . Phần thực và phần ảo của số phức w = 2z + là?
Xem thêm các bài Chuyên đề Toán lớp 12 hay, chi tiết khác:
Xem thêm các chương trình khác:
- Giải sgk Hóa học 12 (sách mới) | Giải bài tập Hóa 12
- Lý thuyết Hóa học 12
- Giải sbt Hóa học 12
- Các dạng bài tập Hoá học lớp 12
- Giáo án Hóa học lớp 12 mới nhất
- Tóm tắt tác phẩm Ngữ văn 12
- Soạn văn 12 (hay nhất) | Để học tốt Ngữ văn 12 (sách mới)
- Soạn văn 12 (ngắn nhất)
- Tác giả tác phẩm Ngữ văn lớp 12
- Văn mẫu lớp 12
- Giải sgk Sinh học 12 (sách mới) | Giải bài tập Sinh học 12
- Lý thuyết Sinh học 12 | Kiến thức trọng tâm Sinh 12
- Giải sgk Địa Lí 12 (sách mới) | Giải bài tập Địa lí 12
- Lý thuyết Địa Lí 12
- Giải Tập bản đồ Địa Lí 12
- Giải sgk Vật Lí 12 (sách mới) | Giải bài tập Vật lí 12
- Giải sbt Vật Lí 12
- Lý thuyết Vật Lí 12
- Các dạng bài tập Vật lí lớp 12
- Giáo án Vật lí lớp 12 mới nhất
- Giải sgk Lịch sử 12 (sách mới) | Giải bài tập Lịch sử 12
- Giải Tập bản đồ Lịch sử 12
- Lý thuyết Lịch sử 12
- Giải sgk Giáo dục công dân 12
- Lý thuyết Giáo dục công dân 12
- Giải sgk Giáo dục quốc phòng - an ninh 12 (sách mới) | Giải bài tập GDQP 12
- Lý thuyết Giáo dục quốc phòng 12 | Kiến thức trọng tâm GDQP 12
- Lý thuyết Tin học 12
- Lý thuyết Công nghệ 12