Bài 15 trang 106 Toán 11 Tập 2 | Kết nối tri thức Giải Toán lớp 11

Lời giải Bài 15 trang 106 Toán 11 Tập 2 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 217 07/12/2023


Giải Toán 11 Bài tập ôn tập cuối năm

Bài 15 trang 106 Toán 11 Tập 2: Cho hình lập phương ABCD.A'B'C'D' có AC' = 3 . Khoảng cách giữa hai đường thẳng AB' và BC' bằng

A. 13 .

B. 33 .

C. 32 .

D. 12 .

Lời giải:

Đáp án đúng là: B

Bài 15 trang 106 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Gọi O là giao điểm của AC và BD. Vì ABCD là hình vuông nên O là trung điểm của AC, BD và AC BD.

Có AD // B'C' và AD = B'C' (vì cùng song song và bằng BC) nên ADC'B' là hình bình hành, suy ra AB' // DC'. Do đó AB' // (BDC').

Khi đó d(AB', BC') = d(AB', (BDC')) = d(A, (BDC')) = d(C, (BDC')) .

Giả sử hình lập phương ABCD.A'B'C'D' có cạnh là a.

Xét tam giác ABC vuông tại B có AC=AB2+BC2=a2+a2=a2 .

Vì CC' (ABCD) nên CC' AC hay tam giác ACC' vuông tại C.

Xét tam giác ACC' vuông tại C, có AC'2=AC2+CC'23=2a2+a2a=1 .

Do đó hình lập phương ABCD.A'B'C'D' có cạnh là 1 nên AC = 2 .

Vì O là trung điểm của AC nên CO = 22 .

Có AC BD, BD AA' (do AA' (ABCD)), suy ra BD (ACC'A') mà BD (BDC') nên (BDC') (ACC'A') .

Kẻ CE C'O tại E.

Vì (BDC') (ACC'A'), (BDC') (ACC'A') = C'O mà CE C'O nên CE (BDC').

Khi đó d(C, (BDC')) = CE.

Xét tam giác C'CO vuông tại C, CE là đường cao có:

1CE2=1CC'2+1CO2=11+1222=3CE2=13CE=33.

Vậy d(AB', BC') =33 .

1 217 07/12/2023


Xem thêm các chương trình khác: