Viết hệ bất phương trình bậc nhất hai ẩn có miền nghiệm là miền đa giác

Lời giải Bài 16 trang 30 SBT Toán 10 Tập 1 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.

1 465 05/12/2022


Giải SBT Toán 10 Cánh diều Bài 2: Hệ bất phương trình bậc nhất hai ẩn

Bài 16 trang 30 SBT Toán 10 Tập 1: Viết hệ bất phương trình bậc nhất hai ẩn có miền nghiệm là miền đa giác không bị gạch ở mỗi Hình 10a, 10b.

Sách bài tập Toán 10 Bài 2: Hệ bất phương trình bậc nhất hai ẩn - Cánh diều (ảnh 1)

Lời giải:

Xét Hình 10a):

Sách bài tập Toán 10 Bài 2: Hệ bất phương trình bậc nhất hai ẩn - Cánh diều (ảnh 1)

Ta có: Đường thẳng d1 đi qua hai điểm O và A là trục tung Oy có phương trình x = 0.

Ta thấy điểm B thuộc miền nghiệm nằm bên phải trục tung nên điểm B thỏa mãn bất phương trình x ≥ 0 (1)

Đường thẳng d2 đi qua hai điểm O và B là trục hoành Ox có phương trình y = 0.

Ta thấy điểm B thuộc miền nghiệm nằm trên trục hoành nên điểm B thỏa mãn bất phương trình y ≥ 0 (2)

Đường thẳng d3 đi qua hai điểm A(0; 6) và B(3; 0) có phương trình là: x3+y6=12x+y=6.

Ta thấy điểm O(0; 0) có 2.0 + 0 = 0 < 6 thuộc miền nghiệm nên điểm O thỏa mãn bất phương trình 2x + y ≤ 6 (3).

Từ (1), (2) và (3) miền nghiệm tam giác OAB biểu diễn cho hệ bất phương trình:

x0y02x+y6.

Xét Hình 10b):

Sách bài tập Toán 10 Bài 2: Hệ bất phương trình bậc nhất hai ẩn - Cánh diều (ảnh 1)

Ta có: Đường thẳng d1 đi qua hai điểm A(0; 3) và B(9; 3) song song với trục hoành có phương trình y = 3.

Ta thấy điểm O thuộc miền nghiệm có 0 < 3 nên điểm O thỏa mãn bất phương trình y ≤ 3 (1)

Đường thẳng d2 đi qua hai điểm A(0; 3) và D(– 5; – 2) cắt hai trục tọa độ Ox và Oy lần lượt tại các điểm có tọa độ là (– 3; 0) và (0; 3) có phương trình là: x3+y3=1xy=3.

Ta thấy điểm O thuộc miền nghiệm có 0 – 0 = 0 > – 3 nên điểm O thỏa mãn bất phương trình x – y ≥ – 3.

Đường thẳng d3 đi qua hai điểm B(9; 3) và C(4; – 2) song song với đường thẳng d2 có phương trình là: x – y = c.

Vì đường thẳng này đi qua B(9; 3) nên ta có: 9 – 3 = c hay c = 6.

Khi đó phương trình d3 là x – y = 6.

Ta thấy điểm O(0; 0) có 0 – 0 = 0 < 3 thuộc miền nghiệm nên điểm O thỏa mãn bất phương trình x – y ≤ 3 (3).

Đường thẳng d1 đi qua hai điểm C(4; – 2) và D(– 5; – 2) song song với trục hoành có phương trình y = – 2.

Ta thấy điểm O thuộc miền nghiệm có 0 > – 2 nên điểm O thỏa mãn bất phương trình y ≥ – 2 (4)

Từ (1), (2), (3) và (4) miền nghiệm của tứ giác ABCD biểu diễn cho hệ bất phương trình:

y3y2xy3xy6.

1 465 05/12/2022


Xem thêm các chương trình khác: