50 bài tập về Tính chất hai tiếp tuyến cắt nhau đầy đủ (có đáp án 2024) - Toán 9
Với Tính chất hai tiếp tuyến cắt nhau đầy đủ, chi tiết Toán lớp 9 chi tiết nhất giúp học sinh dễ dàng nhớ toàn bộ các Tính chất hai tiếp tuyến cắt nhau từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:
Tính chất hai tiếp tuyến cắt nhau đầy đủ, chi tiết - Toán lớp 9
I. Lý thuyết
• Nếu hai tuyến tuyến của một đường tròn cắt nhau tại một điểm thì
- Điểm đó cách đều hai tiếp điểm.
- Tia kẻ từ điểm đó đi qua tâm là tia phân giác của góc tạo bởi hai tiếp tuyến.
- Tia kẻ từ tâm đi qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua hai tiếp điểm.
Cho đường tròn (O;R) có AB; AC là hai tiếp tuyến của đường tròn; B, C là hai tiếp điểm
Khi đó ta có:
+ AB = AC.
+ AO là tia phân giác hay .
+ OA là tia phân giác hay .
II. Một số ví dụ
Ví dụ 1: Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AM, AN với đường tròn (M, N là tiếp điểm).
a) Chứng minh AO vuông góc với MN.
b) Vẽ đường kính NOC. Chứng minh MC // AO.
c) Tính độ dài các cạnh tam giác AMN biết: OM = 3cm, OA = 5cm.
Lời giải:
a) Gọi H là giao điểm của AO và MN.
Vì AM và AN là hai tiếp tuyến cắt nhau tại A nên OA là tia phân giác
(tính chất)
Xét tam giác OMH và tam giác ONH có:
OM = ON = R
OH chung
(chứng minh trên)
Do đó: (c – g – c)
(hai góc tương ứng)
Mà (hai góc kề bù)
Do đó: hay
(do H nằm trên OA)
b) Xét tam giác MNC có ba đỉnh M, N, C cùng nằm trên đường tròn (O)
Lại có NC là đường kính
Do đó tam giác MNC vuông tại M.
Ta có:
(quan hệ từ vuông góc đến song song)
c) Xét tam giác OMA vuông tại M (do AM là tiếp tuyến của (O) với M là tiếp điểm) ta có:
(định lý Py – ta – go)
Mà MA và NA là hai tiếp tuyến cắt nhau
(tính chất)
Tam giác OAM vuông tại M, đường cao MH ta có:
MA.MO = MH.OA
Tam giác OMN có:
OM = ON
Do đó tam giác OMN cân tại O.
Khi đó OH vừa là đường cao vừa là đường trung tuyến.
Suy ra H là trung điểm của MN
MN = 2MH = 2,4.2 = 4,8cm
Vậy tam giác AMN có AM = AN = 4 cm, MN = 4,8 cm.
Ví dụ 2: Từ điểm A nằm ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Kẻ BE vuông góc với AC, CF vuông góc với AB (E thuộc AC, F thuộc AB), BE và CF cắt nhau tại H.
a) Chứng minh tứ giác OBHC là hình thoi.
b) Chứng minh ba điểm A, H, O thẳng hàng.
Lời giải:
a) Vì AB là tiếp tuyến của đường tròn (O) tại B nên OB AB
Lại có CF AB (giải thuyết)
Do đó: OB // CF hay OB // CH (1)
Vì AC là tiếp tuyến của đường tròn (O) tại C nên OC AC
Lại có: BE AC (giả thuyết)
Do đó: OC // BE hay OC // BH (2)
Xét tứ giác OBHC có:
OB // CH (theo (1))
OC // BH (theo (2))
Do đó tứ giác OBHC là hình bình hành (dấu hiệu nhận biết)
Lại có: OB = OC nên hình bình hành OBHC là hình thoi (dấu hiệu nhận biết).
b) Vì OBHC là hình thoi nên OH là đường phân giác góc (tính chất) (3)
Do AB, AC là hai tiếp tuyến của đường tròn (O) và chúng cắt nhau tại A
Nên OA là đường phân giác góc (tính chất) (4)
Từ (3) và (4) hay O, A, H thẳng hàng.
Xem thêm tổng hợp công thức môn Toán lớp 9 đầy đủ và chi tiết khác:
Công thức liên hệ đường kính và dây cung hay, chi tiết
Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây hay, chi tiết
Vị trí tương đối của đường thẳng và đường tròn đầy đủ, chi tiết
Xem thêm các chương trình khác:
- Giải sgk Hóa học 9 (sách mới) | Giải bài tập Hóa 9
- Giải sbt Hóa học 9
- Giải vở bài tập Hóa học 9
- Lý thuyết Hóa học 9
- Các dạng bài tập Hóa học lớp 9
- Tóm tắt tác phẩm Ngữ văn 9 (sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Soạn văn 9 (hay nhất) | Để học tốt Ngữ văn 9 (sách mới)
- Soạn văn 9 (ngắn nhất)
- Văn mẫu 9 (sách mới) | Để học tốt Ngữ văn 9 Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Tác giả - tác phẩm Ngữ văn 9 (sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Giải sgk Tiếng Anh 9 (thí điểm)
- Giải sgk Tiếng Anh 9 (sách mới) | Để học tốt Tiếng Anh 9
- Giải sbt Tiếng Anh 9
- Giải sbt Tiếng Anh 9 (thí điểm)
- Giải sgk Sinh học 9 (sách mới) | Giải bài tập Sinh học 9
- Giải vở bài tập Sinh học 9
- Lý thuyết Sinh học 9
- Giải sbt Sinh học 9
- Giải sgk Vật Lí 9 (sách mới) | Giải bài tập Vật lí 9
- Giải sbt Vật Lí 9
- Lý thuyết Vật Lí 9
- Các dạng bài tập Vật lí lớp 9
- Giải vở bài tập Vật lí 9
- Giải sgk Địa Lí 9 (sách mới) | Giải bài tập Địa lí 9
- Lý thuyết Địa Lí 9
- Giải Tập bản đồ Địa Lí 9
- Giải sgk Tin học 9 (sách mới) | Giải bài tập Tin học 9
- Lý thuyết Tin học 9
- Lý thuyết Giáo dục công dân 9
- Giải vở bài tập Lịch sử 9
- Giải Tập bản đồ Lịch sử 9
- Lý thuyết Lịch sử 9
- Lý thuyết Công nghệ 9