Công thức xét tính đồng biến, nghịch biến hay, chi tiết hay nhất - Toán lớp 9
Với Công thức xét tính đồng biến, nghịch biến hay, chi tiết Toán lớp 9 chi tiết nhất giúp học sinh dễ dàng nhớ toàn bộ các Công thức xét tính đồng biến, nghịch biến từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:
Công thức xét tính đồng biến, nghịch biến hay, chi tiết - Toán lớp 9
I. Lý thuyết
1. Khái niệm về tính đồng biến, nghịch biến
Cho hàm số y = f(x) xác định với mọi giá trị của x thuộc .
- Nếu giá trị của biến x tăng lên mà giá trị y = f(x) tương ứng cũng tăng thì hàm số y = f(x) là hàm số đồng biến trên .
- Nếu giá trị của biến x tăng lên mà giá trị của y = f(x) tương ứng giảm thì hàm số y = f(x) là hàm số nghịch biến trên .
2. Công thức xét tính đồng biến, nghịch biến
Cách 1: Dựa vào khái nệm
Với x1, x2 bất kì thuộc :
- Nếu và thì hàm số y = f(x) đồng biến trên .
- Nếu và thì hàm số y = f(x) nghịch biến trên .
Cách 2: Xét dấu của giá trị T
Để xét tính đồng biến, nghịch biến của hàm số y = f(x), ta xét dấu của T, với và
Nếu T < 0 thì hàm số nghịch biến trên .
Nếu T > 0 thì hàm số đồng biến trên .
3. Công thức xét tính đồng biến, nghịch biến của hàm số bậc nhất
a) Khái niệm về hàm số bậc nhất
Hàm số bậc nhất có dạng y = ax + b, trong đó a, b là hai số đã cho và .
b) Công thức xét tính đồng biến, nghịch biến của hàm số bậc nhất
Ngoài hai cách ta đã nêu ở mục hai đối với hàm số bậc nhất ta còn cách xét hệ số a.
- Hàm số bậc nhất xác định bởi mọi x .
- Hàm số bậc nhất đồng biến trên khi a > 0.
- Hàm số bậc nhất nghịch biến trên khi a < 0.
II. Một số ví dụ
Ví dụ 1: Xét tính đồng biến nghịch biến của các hàm số sau:
a) y = 3x + 3
b) y = -2x – 3
Lời giải:
a) Cách 1:
Hàm số xác định với mọi giá trị x thuộc
Ta có: y = f(x) = 3x + 3
Với ta có:
Xét
hàm số đồng biến trên .
Cách 2:
Ta có hàm số y = 3x + 3 là hàm số bậc nhất có a = 3 > 0 nên hàm số đã cho đồng biến trên .
b) Cách 1:
Hàm số xác định với mọi giá trị x thuộc
Với ta có:
Xét
Vậy hàm số đã xét nghịch biến trên .
Cách 2:
Hàm số y = -2x – 3 là hàm số bậc nhất có a = -2 < 0 nên hàm số đã cho nghịch biến trên .
Ví dụ 2: Tìm m để
a) y = (2m + 1)x + 3 đồng biến trên .
b) y = (-3m – 2) x + 5 nghịch biến trên
Lời giải:
a) Hàm số y = (2m + 1)x + 3 là hàm số bậc nhất có a = 2m + 1 và b = 3
Để hàm số đồng biến trên thì a > 0.
2m + 1 > 0
Vậy thì hàm số đồng biến trên .
b) Hàm số y = (-3m – 2) x + 5 là hàm số bậc nhất có a = -3m – 2; b = -2
Để hàm số nghịch biến trên thì a < 0
-3m – 2 < 0
Vậy thì hàm số nghịch biến trên .
Xem thêm tổng hợp công thức môn Toán lớp 9 đầy đủ và chi tiết khác:
Công thức vẽ đồ thị hàm số bậc nhất hay, chi tiết
Công thức về hệ số góc của đường thẳng hay, chi tiết
Công thức về vị trí tương đối của hai đường thẳng hay, chi tiết
Công thức tìm tọa độ giao điểm của hai đường thẳng hay, chi tiết
Xem thêm các chương trình khác:
- Giải sgk Hóa học 9 (sách mới) | Giải bài tập Hóa 9
- Giải sbt Hóa học 9
- Giải vở bài tập Hóa học 9
- Lý thuyết Hóa học 9
- Các dạng bài tập Hóa học lớp 9
- Tóm tắt tác phẩm Ngữ văn 9 (sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Soạn văn 9 (hay nhất) | Để học tốt Ngữ văn 9 (sách mới)
- Soạn văn 9 (ngắn nhất)
- Văn mẫu 9 (sách mới) | Để học tốt Ngữ văn 9 Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Tác giả - tác phẩm Ngữ văn 9 (sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Giải sgk Tiếng Anh 9 (thí điểm)
- Giải sgk Tiếng Anh 9 (sách mới) | Để học tốt Tiếng Anh 9
- Giải sbt Tiếng Anh 9
- Giải sbt Tiếng Anh 9 (thí điểm)
- Giải sgk Sinh học 9 (sách mới) | Giải bài tập Sinh học 9
- Giải vở bài tập Sinh học 9
- Lý thuyết Sinh học 9
- Giải sbt Sinh học 9
- Giải sgk Vật Lí 9 (sách mới) | Giải bài tập Vật lí 9
- Giải sbt Vật Lí 9
- Lý thuyết Vật Lí 9
- Các dạng bài tập Vật lí lớp 9
- Giải vở bài tập Vật lí 9
- Giải sgk Địa Lí 9 (sách mới) | Giải bài tập Địa lí 9
- Lý thuyết Địa Lí 9
- Giải Tập bản đồ Địa Lí 9
- Giải sgk Tin học 9 (sách mới) | Giải bài tập Tin học 9
- Lý thuyết Tin học 9
- Lý thuyết Giáo dục công dân 9
- Giải vở bài tập Lịch sử 9
- Giải Tập bản đồ Lịch sử 9
- Lý thuyết Lịch sử 9
- Lý thuyết Công nghệ 9