50 bài tập về Phương trình bậc nhất hai ẩn và tập nghiệm (có đáp án 2024) - Toán 9
Với cách giải Phương trình bậc nhất hai ẩn và tập nghiệm môn Toán lớp 9 Đại số gồm phương pháp giải chi tiết, bài tập minh họa có lời giải và bài tập tự luyện sẽ giúp học sinh biết cách làm bài tập Phương trình bậc nhất hai ẩn và tập nghiệm. Mời các bạn đón xem:
Phương trình bậc nhất hai ẩn và tập nghiệm và cách giải bài tập - Toán lớp 9
I. Lý thuyết
1. Khái niệm phương trình bậc nhất hai ẩn
- Phương trình bậc nhất hai ẩn x, y là phương trình có dạng: ax + by = c
trong đó a, b, c là các số cho trước, .
- Nếu số thực thỏa mãn thì cặp số được gọi là nghiệm của phương trình ax + by = c.
- Trong mặt phẳng tọa độ Oxy, mỗi nghiệm của phương trình ax + by = c được biểu diễn bởi điểm có tọa độ .
2. Tập nghiệm của phương trình bậc nhất hai ẩn
Phương trình bậc nhất hai ẩn ax + by =c luôn có vô số nghiệm.
Tập nghiệm của phương trình biểu diễn bởi đường thẳng d: ax + by = c
- Nếu và b = 0 thì phương trình có nghiệm và đường thẳng d song song hoặc trùng với trục tung.
- Nếu a = 0 và thì phương trình có nghiệm và đường thẳng d song song hoặc trùng với trục hoành.
- Nếu thì phương trình có nghiệm hoặc khi đó đường thẳng d cắt cả hai trục Ox; Oy. Đường thẳng d là đồ thị hàm số .
II. Dạng bài tập và phương pháp giải
Dạng 1: Xét một cặp số cho trước có là nghiệm của phương trình bậc nhất hai ẩn không
Phương pháp giải: Nếu cặp số thực thỏa mãn thì nó được gọi là nghiệm của phương trình ax + by = c.
Ví dụ 1: Trong các cặp số (12; 1); (1; 1); (2; -3) cặp số nào là nghiệm của phương trình 2x – 5y =19.
Lời giải:
- Xét cặp số (12; 1)
Thay x = 12 và y = 1 ta có:
2.12 -1.5 = 24 – 5 = 19 nên cặp số (12; 1) là nghiệm của phương trình 2x – 5y = 19.
- Xét cặp số (1; 1) ta có:
Thay x = 1; y = 1 ta có:
2.1 – 5.1 = -3 nên cặp số (1; 1) không là nghiệm của phương trình 2x – 5y =19.
- Xét cặp số (2; -3)
Thay x = 2 và y = -3 ta có:
2.2 – 5.(-3) = 4 + 15 = 19 nên căp số (2; -3) là nghiệm của phương trình 2x – 5y = 19.
Ví dụ 2: Viết phương trình bậc nhất hai ẩn có hai nghiệm là (2; 0) và (-1; -2).
Lời giải:
Vì nghiệm của phương trình bậc nhất hai ẩn nằm trên một đường thẳng nên ta gọi đường thẳng đó là d: y = ax + b.
+ Thay x = 2; y = 0 vào đường thẳng d ta có: 0 = 2.a + b (1)
+ Thay x = -1; y = -2 vào đường thẳng d ta có: -2 = -1.a + b (2)
Từ (2) ta có: b = -2 + a thay vào (1) ta có:
2.a + a – 2 =0
3a – 2 = 0
3a = 2
Đường thẳng d cần tìm là y = x
Phương trình bậc nhất hai ẩn là 2x – 3y – 4 = 0.
Dạng 2: Viết công thức nghiệm tổng quát của phương trình bậc nhất hai ẩn và biểu diễn tập nghiệm phương trình trên mặt phẳng tọa độ
Phương pháp giải: Xét phương trình bậc nhất hai ẩn ax + by + c = 0.
- Để viết công thức nghiệm tổng quát của phương trình, trước tiên ta biểu diễn x theo y (hoặc y theo x) rồi đưa ra kết luận về công thức nghiệm tổng quát.
- Để biểu diễn tập nghiệm phương trình trên mặt phẳng tọa độ, ta vẽ đường thẳng d có phương trình ax + by = c trên mặt phẳng tọa độ.
Ví dụ 1: Viết công thức nghiệm tổng quát và biểu diễn tập nghiệm của các phương trình sau:
a) 2x – 3y = 5
b) 4x +0y =12.
Lời giải:
a) Xét phương trình 2x – 3y = 5 ta có:
(do a = 2; b = -3) nên ta có công thức nghiệm của phương trình là
Vẽ đường thẳng trên hệ mặt phẳng tọa độ.
Cho x = 0
Cho y = 0
Nghiệm của phương trình 2x – 3y = 5 là đường thẳng được biểu diễn trên hình vẽ.
b) Xét phương trình 4x + 0y = 12
(do a = 4; b = 0) nên ta có công thức nghiệm của phương trình là
Vẽ đường thẳng x = 3 trên hệ mặt phẳng tọa độ.
Dạng 3: Tìm điều kiện của tham số để đường thẳng thỏa mãn điều kiện cho trước
Phương pháp giải: Ta có thể sử dụng một số lưu ý sau đây để giải dạng toán này.
- Nếu và b = 0 thì phương trình đường thẳng d: ax + by = c có dạng d: khi đó d song song hoặc trùng với Oy.
- Nếu a = 0 và thì phương trình đường thẳng d: ax + by = c có dạng d: khi đó d song song hoặc trùng với Ox.
- Nếu thì phương trình đường thẳng d: ax + by = c có dạng d: .
- Đường thẳng d: ax + by = c đi qua điểm khi và chỉ khi .
Ví dụ 1: Cho đường thẳng d có phương trình: (m – 2)x + (3m – 1)y = 6m – 2
Tìm m để:
a) d song song hoặc trùng với trục hoành.
b) d song song hoặc trùng với trục tung
c) d đi qua điểm A(1; -1).
Lời giải:
a) Để d song song với trục hoành
Vậy m = 2 thì d song song với trục hoàng.
b) Để d song song với trục tung
Vậy thì d song song với trục tung.
c) d đi qua A(1; -1). Thay x = 1; y = -1 và d ta có:
(m - 2).1 + (3m – 1).(-1) = 6m – 2
Vậy thì d đi qua A(1; -1)
III. Bài tập tự luyện
Bài 1: Cặp số (-2; 3) là nghiệm của phương trình nào trong các phương trình dưới đây?
a) x – y = 1
b) 2x + 3y = 5
c) 2x + y = 7
d) 2x – y = -7
Bài 2: Trong các cặp số (1; 3); (-2; 0); (0; 4); (3; 2) cắp số nào là nghiệm của phương trình 2x + 2y = 8.
Bài 3: Tìm các giá trị của m để phương trình bậc nhất hai ẩn có một nghiệm là (1; -1).
Bài 4: Cho hai nghiệm của một phương trình bậc nhất hai ẩn là (2; 3) và (4; 6). Tìm phương trình bậc nhất hai ẩn đó.
Bài 5: Viết công thức tổng quát và biểu diễn tập nghiệm của các phương trình sau trên mặt phẳng tọa độ:
a) 3x – y = 5
b) 2x + 0y = 6
c) 0x + 3y = 9.
Bài 6: Cho đường thẳng d có phương trình:
(2m – 1)x +3(m – 1)y = 4m – 2
Tìm các tham số m để
a) d song song với Ox
b) d song song với Oy
c) d đi qua gốc tọa độ
d) d đi qua điểm A(2; 1).
Bài 7: Tìm giá trị của tham số m để cặp số là nghiệm của phương trình:
(m – 3)x +2my = 5 + m
Bài 8: Viết công thức nghiệm tổng quát và biểu diễn tập nghiệm của các phương trình sau trên mặt phẳng tọa độ:
a) x – 2y = 7
b) 3x – 2y = 3
c) 7x + 0y = 14.
Bài 9: Tìm phương trình đường thẳng d biết d đi qua hai điểm M(-1; -3) và N(2; 1).
Bài 10: Cho đường thẳng d có phương trình:
(2m – 3)x + (3m – 1)y = m + 2
a) d song song với Ox
b) d song song với Oy
c) d đi qua gốc tọa độ
d) d đi qua A(2; 3).
Xem thêm các dạng bài tập Toán lớp 9 có đáp án và lời giải chi tiết khác:
Đường thẳng song song, đường thẳng cắt nhau và cách giải bài tập
Các bài toán về hệ số góc của đường thẳng và cách giải
Giải hệ phương trình bậc nhất hai ẩn hay, chi tiết
Xem thêm các chương trình khác:
- Giải sgk Hóa học 9 (sách mới) | Giải bài tập Hóa 9
- Giải sbt Hóa học 9
- Giải vở bài tập Hóa học 9
- Lý thuyết Hóa học 9
- Các dạng bài tập Hóa học lớp 9
- Tóm tắt tác phẩm Ngữ văn 9 (sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Soạn văn 9 (hay nhất) | Để học tốt Ngữ văn 9 (sách mới)
- Soạn văn 9 (ngắn nhất)
- Văn mẫu 9 (sách mới) | Để học tốt Ngữ văn 9 Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Tác giả - tác phẩm Ngữ văn 9 (sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Giải sgk Tiếng Anh 9 (thí điểm)
- Giải sgk Tiếng Anh 9 (sách mới) | Để học tốt Tiếng Anh 9
- Giải sbt Tiếng Anh 9
- Giải sbt Tiếng Anh 9 (thí điểm)
- Giải sgk Sinh học 9 (sách mới) | Giải bài tập Sinh học 9
- Giải vở bài tập Sinh học 9
- Lý thuyết Sinh học 9
- Giải sbt Sinh học 9
- Giải sgk Vật Lí 9 (sách mới) | Giải bài tập Vật lí 9
- Giải sbt Vật Lí 9
- Lý thuyết Vật Lí 9
- Các dạng bài tập Vật lí lớp 9
- Giải vở bài tập Vật lí 9
- Giải sgk Địa Lí 9 (sách mới) | Giải bài tập Địa lí 9
- Lý thuyết Địa Lí 9
- Giải Tập bản đồ Địa Lí 9
- Giải sgk Tin học 9 (sách mới) | Giải bài tập Tin học 9
- Lý thuyết Tin học 9
- Lý thuyết Giáo dục công dân 9
- Giải vở bài tập Lịch sử 9
- Giải Tập bản đồ Lịch sử 9
- Lý thuyết Lịch sử 9
- Lý thuyết Công nghệ 9