50 bài tập về Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây hay (có đáp án 2024) - Toán 9
Với Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây hay, chi tiết Toán lớp 9 chi tiết nhất giúp học sinh dễ dàng nhớ toàn bộ các Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:
Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây hay, chi tiết - Toán lớp 9
I. Lý thuyết
Cho đường tròn (O), hai dây AB, DC của đường tròn.
+ Nếu dây AB = CD thì khoảng cách từ O đến AB bằng khoảng cách từ O đến CD.
+ Nếu khoảng cách từ O đến AB bằng khoảng cách từ O đến CD thì dây AB = CD.
Xét hình vẽ trên:
Nếu AB = CD thì OE = OF
Nếu OE = OF thì AB = CD
- Trong hai dây của một đường tròn
+ Dây nào có độ dài lớn hơn thì dây đó gần tâm hơn.
+ Dây nào gần tâm hơn thì dây đó có độ dài lớn hơn.
Xét hình vẽ:
Nếu AB > CD thì OE < OF
Nếu OE < OF thì AB > CD
II. Ví dụ
Ví dụ 1: Trong các khẳng định sau đây, câu nào đúng câu nào sai:
a) Hai dây có độ dài bằng nhau thì khoảng cách từ tâm đến mỗi dây đó là bằng nhau.
b) Dây AB lớn hơn dây CD thì khoảng cách từ tâm đến dây AB lớn hơn khoảng cách từ tâm đến dây CD.
c) AB, CD là hai dây của đường tròn, khoảng cách từ tâm đến AB và CD lần lượt là 4cm và 5cm nên dây AB lớn hơn dây CD.
Lời giải:
a) đúng vì theo tính chất hai dây bằng nhau.
b) sai vì dây AB lớn hơn dây CD nên dây AB gần tâm hơn dây CD do đó khoảng cách từ tâm đến dây AB nhỏ hơn khoảng cách từ tâm đến dây CD.
c) đúng vì khoảng cách từ tâm đến dây AB nhỏ hơn khoảng cách từ tâm đến dây CD nên dây AB lớn hơn dây CD.
Ví dụ 2: Cho đường tròn (O) đường kính AB và dây CD, vẽ hai dây AD và BC song song với nhau. Chứng minh:
a) AC = BD;
b) CD là đường kính của (O).
Lời giải:
a) Gọi E là trung điểm của AD; G là trung điểm của BC
(tính chất)
Mà AD // BC nên O, E, G thẳng hàng
Xét và có
OA = OB (bán kính)
(hai góc đối đỉnh)
Do đó = (cạnh huyền – góc nhọn)
AE = BG mà E là trung điểm của AD, G là trung điểm của BC
AD = BC.
Xét tứ giác ADBC có:
AD = BC (chứng minh trên)
AD // BC (giả thuyết)
Do đó tứ giác ADBC là hình bình hành
AC = BC (tính chất).
b) Vì ADBC là hình bình hành nên hai đường chéo B và CD cắt nhau tại trung điểm mỗi đường.
Mà O là trung điểm AB nên O cũng là trung điểm của CD
O, C, D thẳng hàng
CD là đường kính của đường tròn (O).
Xem thêm tổng hợp công thức môn Toán lớp 9 đầy đủ và chi tiết khác:
Công thức liên hệ đường kính và dây cung hay, chi tiết
Vị trí tương đối của đường thẳng và đường tròn đầy đủ, chi tiết
Xem thêm các chương trình khác:
- Giải sgk Hóa học 9 (sách mới) | Giải bài tập Hóa 9
- Giải sbt Hóa học 9
- Giải vở bài tập Hóa học 9
- Lý thuyết Hóa học 9
- Các dạng bài tập Hóa học lớp 9
- Tóm tắt tác phẩm Ngữ văn 9 (sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Soạn văn 9 (hay nhất) | Để học tốt Ngữ văn 9 (sách mới)
- Soạn văn 9 (ngắn nhất)
- Văn mẫu 9 (sách mới) | Để học tốt Ngữ văn 9 Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Tác giả - tác phẩm Ngữ văn 9 (sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Giải sgk Tiếng Anh 9 (thí điểm)
- Giải sgk Tiếng Anh 9 (sách mới) | Để học tốt Tiếng Anh 9
- Giải sbt Tiếng Anh 9
- Giải sbt Tiếng Anh 9 (thí điểm)
- Giải sgk Sinh học 9 (sách mới) | Giải bài tập Sinh học 9
- Giải vở bài tập Sinh học 9
- Lý thuyết Sinh học 9
- Giải sbt Sinh học 9
- Giải sgk Vật Lí 9 (sách mới) | Giải bài tập Vật lí 9
- Giải sbt Vật Lí 9
- Lý thuyết Vật Lí 9
- Các dạng bài tập Vật lí lớp 9
- Giải vở bài tập Vật lí 9
- Giải sgk Địa Lí 9 (sách mới) | Giải bài tập Địa lí 9
- Lý thuyết Địa Lí 9
- Giải Tập bản đồ Địa Lí 9
- Giải sgk Tin học 9 (sách mới) | Giải bài tập Tin học 9
- Lý thuyết Tin học 9
- Lý thuyết Giáo dục công dân 9
- Giải vở bài tập Lịch sử 9
- Giải Tập bản đồ Lịch sử 9
- Lý thuyết Lịch sử 9
- Lý thuyết Công nghệ 9