50 bài tập về Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây hay (có đáp án 2024) - Toán 9

Với Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây hay, chi tiết Toán lớp 9 chi tiết nhất giúp học sinh dễ dàng nhớ toàn bộ các Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

1 3,665 29/12/2023
Tải về


Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây hay, chi tiết - Toán lớp 9

I. Lý thuyết

Cho đường tròn (O), hai dây AB, DC của đường tròn.

+ Nếu dây AB = CD thì khoảng cách từ O đến AB bằng khoảng cách từ O đến CD.

+ Nếu khoảng cách từ O đến AB bằng khoảng cách từ O đến CD thì dây AB = CD.

Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây hay, chi tiết hay nhất - Toán lớp 9  (ảnh 1)

Xét hình vẽ trên:

Nếu AB = CD thì OE = OF

Nếu OE = OF thì AB = CD

- Trong hai dây của một đường tròn

+ Dây nào có độ dài lớn hơn thì dây đó gần tâm hơn.

+ Dây nào gần tâm hơn thì dây đó có độ dài lớn hơn.

Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây hay, chi tiết hay nhất - Toán lớp 9  (ảnh 1)

Xét hình vẽ:

Nếu AB > CD thì OE < OF

Nếu OE < OF thì AB > CD

II. Ví dụ

Ví dụ 1: Trong các khẳng định sau đây, câu nào đúng câu nào sai:

a) Hai dây có độ dài bằng nhau thì khoảng cách từ tâm đến mỗi dây đó là bằng nhau.

b) Dây AB lớn hơn dây CD thì khoảng cách từ tâm đến dây AB lớn hơn khoảng cách từ tâm đến dây CD.

c) AB, CD là hai dây của đường tròn, khoảng cách từ tâm đến AB và CD lần lượt là 4cm và 5cm nên dây AB lớn hơn dây CD.

Lời giải:

a) đúng vì theo tính chất hai dây bằng nhau.

b) sai vì dây AB lớn hơn dây CD nên dây AB gần tâm hơn dây CD do đó khoảng cách từ tâm đến dây AB nhỏ hơn khoảng cách từ tâm đến dây CD.

c) đúng vì khoảng cách từ tâm đến dây AB nhỏ hơn khoảng cách từ tâm đến dây CD nên dây AB lớn hơn dây CD.

Ví dụ 2: Cho đường tròn (O) đường kính AB và dây CD, vẽ hai dây AD và BC song song với nhau. Chứng minh:

a) AC = BD;

b) CD là đường kính của (O).

Lời giải:

Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây hay, chi tiết hay nhất - Toán lớp 9  (ảnh 1)

a) Gọi E là trung điểm của AD; G là trung điểm của BC

OEADOGBC(tính chất)

Mà AD // BC nên O, E, G thẳng hàng

Xét ΔAOE ΔBOG

OA = OB (bán kính)

AOE^=BOG^(hai góc đối đỉnh)

Do đó ΔAOE = ΔBOG (cạnh huyền – góc nhọn)

AE = BG mà E là trung điểm của AD, G là trung điểm của BC

AD = BC.

Xét tứ giác ADBC có:

AD = BC (chứng minh trên)

AD // BC (giả thuyết)

Do đó tứ giác ADBC là hình bình hành

AC = BC (tính chất).

b) Vì ADBC là hình bình hành nên hai đường chéo B và CD cắt nhau tại trung điểm mỗi đường.

Mà O là trung điểm AB nên O cũng là trung điểm của CD

O, C, D thẳng hàng

CD là đường kính của đường tròn (O).

Xem thêm tổng hợp công thức môn Toán lớp 9 đầy đủ và chi tiết khác:

Công thức liên hệ đường kính và dây cung hay, chi tiết

Vị trí tương đối của đường thẳng và đường tròn đầy đủ, chi tiết

Vị trí tương đối của hai đường tròn đầy đủ, chi tiết

Tính chất hai tiếp tuyến cắt nhau đầy đủ, chi tiết

1 3,665 29/12/2023
Tải về


Xem thêm các chương trình khác: