Trang chủ Lớp 11 Toán 100 câu trắc nghiệm Phương trình lượng giác nâng cao

100 câu trắc nghiệm Phương trình lượng giác nâng cao

100 câu trắc nghiệm Phương trình lượng giác nâng cao (Đề số 1 )

  • 1922 lượt thi

  • 20 câu hỏi

  • 20 phút

Danh sách câu hỏi

Câu 1:

23/07/2024

Tìm tập xác định của hàm số sau: y = tan2xsinx +1cot(3x+π6)

Xem đáp án

Đáp án D


Câu 2:

21/07/2024

Tìm tập xác định của hàm số: y = tan5xsin4x -cos3x

Xem đáp án

Đáp án D

Điều  kiện:

 


Câu 3:

16/07/2024

Tập xác định của hàm số: y = cotxcosx -1

Xem đáp án

Đáp án C


Câu 4:

21/07/2024

Hàm số y = 2 - sin2xm cosx +1 có tập xác định R khi

Xem đáp án

Đáp án D

Hàm số có tập xác định R khi  m cosx + 1 > 0, ∀x (*) .

Khi m = 0 thì (*) luôn đúng nên nhận giá trị m = 0.

Khi m > 0 thì mcosx + 1 ∈ [-m + 1; m + 1] nên (*) đúng khi -m + 1 > 0 => 0 < m < 1.

Khi m < 0 thì mcosx + 1 ∈ [m + 1; -m + 1] nên (*) đúng khi m + 1 > 0 => -1 < m < 0

Vậy giá trị m thoả mãn là -1 < m < 1.


Câu 6:

23/07/2024

Trong các hàm số sau, có bao nhiêu hàm số là hàm chẵn trên tập xác định của nó?

y = cot 2x; y = cos(x + π); y = 1 – sin x; y = tan2016x

Xem đáp án

Đáp án B

+ Xét hàm y = f(x) = cos (x + π)          

TXĐ: D = R

Với mọi x ∈ D, ta có: -x ∈ D và f(-x) = cos (-x + π) = -cos x = cos (x + π) = f(x)

Do đó y = cos (x + π) là hàm số chẵn .

+ Xét hàm y = g(x) = tan2016x

TXĐ: D = R\{π/2 + kπ, k  Z}

Với mọi x ∈ D, ta có: -x ∈ D và g(-x) = tan2016(-x) = (-tan x)2016 = tan2016x = g(x)  

Do đó: y tan2016là hàm chẵn trên tập xác định của nó.

+Xét hàm y = cot2x

f(-x) = cot(-2x) = - cot 2x = -f(x) nên đây là hàm số lẻ.

+ Xét hàm số  y = 1-sinx

f(-x) = 1- sin(-x) = 1+ sin x

Nên hàm số không chẵn không lẻ


Câu 7:

22/07/2024

Xét tính chẵn lẻ của hàm số y = f(x) = cos(2x + π4) + sin(2x - π4), ta được

Xem đáp án

Đáp án D

Ta có tập xác định D = R.

Hàm số y = f(x) = 0 có:

f(-x) = 0 và –f(x) = 0

=> f(x) = f(-x) = -f(x)  vừa thỏa mãn tính chất của hàm số chẵn, vừa thỏa mãn tính chất của hàm số lẻ, nên đây là hàm số vừa chẵn vừa lẻ.


Câu 8:

15/10/2024

Trong các hàm số dưới đây có bao nhiêu hàm số là hàm số chẵn:

y = cos 3x (1);      y = sin (x2 + 1)  (2) ;

y = tan2 x (3);       y = cot x (4);  

Xem đáp án

Đáp án đúng là: C

*Phương pháp giải

Sử dụng định nghĩa

Hàm số y = f(x) xác định trên D

    + Hàm số chẵn Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

    + Hàm số lẻ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Chú ý: Một hàm số có thể không chẵn cũng không lẻ

        Đồ thị hàm số chẵn nhận trục Oy làm trục đối xứng

        Đồ thị hàm số lẻ nhận gốc tọa độ O làm tâm đối xứng

* Quy trình xét hàm số chẵn, lẻ.

B1: Tìm tập xác định của hàm số.

B2: Kiểm tra

    Nếu ∀ x ∈ D ⇒ -x ∈ D Chuyển qua bước ba

    Nếu ∃ x0 ∈ D ⇒ -x0 ∉ D kết luận hàm không chẵn cũng không lẻ.

B3: xác định f(-x) và so sánh với f(x).

    Nếu bằng nhau thì kết luận hàm số là chẵn

    Nếu đối nhau thì kết luận hàm số là lẻ

    Nếu tồn tại một giá trị ∃ x0 ∈ D mà f(-x0 ) ≠ ± f(x0) kết luận hàm số không chẵn cũng không lẻ.

*Lời giải

+ Xét hàm y = f(x) = cos 3x

TXĐ: D = R

Với mọi x ∈ D, ta có: -x ∈ Dvà f(-x) = cos (-3x) = cos 3x = f(x) 

Do đó, y = f(x) = cos 3x  là hàm chẵn trên tập xác định của nó.

+ Xét hàm y = g(x) = sin (x2 + 1) 

TXĐ: D = R

Với mọi x ∈ D, ta có: -x ∈ D và g(-x) = sin ((-x)2 + 1) = sin (x2 + 1) = g(x) 

Do đó: y = g(x) = sin (x2 + 1) là hàm chẵn trên R.

+ Xét hàm y = h(x) = tan2 x

TXĐ: D =  R \ {π / 2 + kπ, k ∈ Z)

Với mọi x ∈ D, ta có: -x ∈ D và h(-x) = tan2 (-x) = tan2 x = h(x) 

Do đó: y = h(x) = tan2 x  là hàm số chẵn trên D

+ Xét hàm y = t(x) = cot x.

TXĐ:  D =  R \ {kπ, k ∈ Z)

Với mọi x ∈ D, ta có: -x ∈ D và t(-x) = cot (-x) = -cot x = -t(x)

Do đó: y = t(x) = cot x là hàm số lẻ trên D.

Xem thêm các bài viết liên quan hay, chi tiết:

Phương pháp xét tính chẵn, lẻ của hàm số chi tiết nhất

Xét tính chẵn, lẻ, chu kì tuần hoàn của hàm số lượng giác và cách giải

 


Câu 9:

23/07/2024

Cho hai hàm số f(x) = 1x - 3+3sin2x và g(x) = sin1-x . Kết luận nào sau đây đúng về tính chẵn lẻ của hai hàm số này?

Xem đáp án

Đáp án D

a, Xét hàm số f(x)=1x-3+3sin2x có tập xác định là D = R\{3}.

Ta có x = -3 ∈ D nhưng  -x = 3 ∉ D nên D không có tính đối xứng. Do đó ta có kết luận hàm số f(x)  không chẵn không lẻ.

b, Xét hàm số g(x)=sin1-x có tập xác định là D2 = [1; + ∞). Dễ thấy D2 không phải là tập đối xứng nên ta kết luận hàm số g(x) không chẵn không lẻ.


Câu 10:

18/07/2024

Xét sự biến thiên của hàm số y = 1 - sinx trên một chu kì tuần hoàn của nó. Trong các kết luận sau, kết luận nào sai?

Xem đáp án

Đáp án D

Hàm số đã cho tuần hoàn với chu kỳ 2π và kết hợp với các phương án đề bài thì ta sẽ xét sự biến thiên của hàm số trên  (-π/2; 3π/2)

Ta có hàm số y = sin x

* Đồng biến trên khoảng (-π/2; π/2)

* Nghịch biến trên khoảng (π/2; 3π/2)

Từ đây suy ra hàm số y = 1 - sinx

* Nghịch biến trên khoảng (-π/2; π/2)

* Đồng biến trên khoảng (π/2; 3π/2)


Câu 11:

08/12/2024

Xét sự biến thiên của hàm số y = sinx - cosx. Trong các kết luận sau, kết luận nào đúng?

Xem đáp án

Đáp án đúng là A

Lời giải

Ta có y=sinx-cosx=2sinx-π4

Từ đây ta có thể loại đáp án C, do tập giá trị của hàm số là -2;2

Hàm số đã cho tuần hoàn với chu kỳ 2π do vậy ta xét sự biến thiên của hàm số trên đoạn (-π/4; 7π/4)

Ta có:

* Hàm số đồng biến trên khoảng (-π/4; 3π/4)

* Hàm số nghịch biến trên khoảng (3π/4; 7π/4)

*Phương pháp giải:

*Lý thuyết:

a) Tính chẵn, lẻ của hàm số:

* Định nghĩa:

- Hàm số y = f(x) với tập xác định D gọi là hàm số chẵn nếu: xD thì xD và f(-x) = f(x).

Đồ thị hàm số chẵn nhận trục tung Oy làm trục đối xứng.

- Hàm số y = f(x) với tập xác định D gọi là hàm số lẻ nếu: xD thì xD và f(-x) = - f(x).

Đồ thị hàm số lẻ nhận gốc tọa độ O làm tâm đối xứng.

* Đối với hàm số lượng giác:

- Hàm số y = sinx là hàm số lẻ trên D = R.

- Hàm số y = cosx là hàm số chẵn trên D = R.

- Hàm số y = tanx là hàm số lẻ trên D=\π2+kπ;k.

- Hàm số y = cotx là hàm số lẻ trên D=\kπ;k.

b) Tính tuần hoàn và chu kì của hàm số:

* Định nghĩa:

- Hàm số y = f(x) xác định trên tập hợp D, được gọi là hàm số tuần hoàn nếu có số T0 sao cho với mọi xD ta có (x+T)D; (xT)D và f(x + T) = f(x).

- Nếu có số dương T nhỏ nhất thỏa mãn các điều kiện trên thì T gọi là chu kì của hàm tuần hoàn f.

* Đối với hàm số lượng giác:

Hàm số y = sinx; y = cosx tuần hoàn với chu kì 2π.

Hàm số y = tanx; y = cotx tuần hoàn với chu kì π.

xem thêm

50 bài tập về Xét tính chẵn, lẻ, chu kì tuần hoàn của hàm số lượng giác (có đáp án 2024) và cách giải 


Câu 12:

23/07/2024

Xét tính tuần hoàn và tìm chu kì (nếu có) của hàm số sau: y = cosx + cos(3x)

Xem đáp án

Đáp án A


Câu 13:

21/07/2024

Cho hàm số y =1sinx . Tìm mệnh đề đúng

Xem đáp án

Đáp án B


Câu 14:

16/07/2024

Xét sự biến thiên của hàm số y = sinx - cosx. Tìm kết luận nào đúng?

Xem đáp án

Đáp án A

 


Câu 16:

20/07/2024

Cho hàm số y = 4sin(x + π6) cos(x - π6) - sin2x. Kết luận nào sau đây là đúng về sự biến thiên của hàm số đã cho?

Xem đáp án

Đáp án A

Ta có  y = 4sin (x + π/6) cos (x - π/6) - sin 2x

= 2 (sin 2x + sin π/3) - sin 2x = sin 2x +3

Xét sự biến thiên của hám số  y = sin 2x +3,

Ta thấy với A. Trên (0; π/4) thì giá trị của hàm số luôn tăng.

Tương tự trên (3π/4; π) thì giá trị của hàm số cũng luôn tăng.


Câu 17:

22/07/2024

Tập xác định của hàm số y = tan(π2cosx) là:

Xem đáp án

Đáp án D

 


Câu 18:

23/07/2024

Hàm số y = sinx + cosx tăng trên khoảng nào? 

Xem đáp án

Đáp án A


Câu 19:

10/10/2024

Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?

Xem đáp án

Đáp án đúng là: A

*Phương pháp giải:

Hàm số f(x) được gọi là hàm số chẵn nếu xD thì xD  f(x)=f(x)

Hàm số f(x) được gọi là hàm số lẻ nếu xD thì xD  f(x)=f(x)

* Lưu ý:

  • Đồ thị của một hàm số chẵn nhận trục tung (Oy) làm trục đối xứng.
  • Đồ thị của một hàm số lẻ nhận gốc tọa độ làm tâm đối xứng.

*Lời giải

+ Xét phương án B: 

Do đó, hàm số này không là  hàm chẵn, không là  hàm lẻ.

+ Xét phương án C: 

y= t(x) =  sinx + cosx

suy ra: t(- x )= sin (- x) + cos (- x) = - sinx + cosx

do đó  hàm số này không chẵn, không lẻ 

+ Phương án A:  TXĐ:  x=  R\  {kπ}

Ta có:

 

Nên hàm số này là hàm số lẻ; nhận gốc tọa độ làm tâm đối xứng.

* Một số lý thuyết và dạng bài thêm về lượng giác và đồ thị:

a, Hàm số y = sinx

  • Tập xác định là R.
  • Tập giá trị là [-1;1].
  • Là hàm số lẻ và tuần hoàn chu kì 2π.
  • Đồng biến trên mỗi khoảng (π2+k2π;π2+k2π) và nghịch biến trên mỗi khoảng (π2+k2π;3π2+k2π).
  • Có đồ thị đối xứng qua gốc tọa độ và gọi là một đường hình sin.

b, Hàm số y = cosx

  • Tập xác định là R.
  • Tập giá trị là [-1;1].
  • Là hàm số chẵn và tuần hoàn chu kì 2π.
  • Đồng biến trên mỗi khoảng (π+k2π;k2π) và nghịch biến trên mỗi khoảng (k2π;π+k2π).
  • Có đồ thị là một đường hình sin đối xứng qua trục tung.

c, Hàm số y = tanx

  • Tập xác định là R{π2+kπ|kZ}.
  • Tập giá trị là R.
  • Là hàm số lẻ và tuần hoàn chu kì π.
  • Đồng biến trên mỗi khoảng (π2+kπ;π2+kπ), kZ.
  • Có đồ thị đối xứng qua gốc tọa độ.

d, Hàm số y = cotx

  • Tập xác định là R{kπ|kZ}.
  • Tập giá trị là R.
  • Là hàm số lẻ và tuần hoàn chu kì π.
  • Đồng biến trên mỗi khoảng (kπ;π+kπ), kZ.
  • Có đồ thị đối xứng qua gốc tọa độ.

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

50 Bài tập Hàm số lượng giác Toán 11 mới

Bài tập trắc nghiệm Lượng giác lớp 11 có lời giải

Xét tính chẵn, lẻ, chu kì tuần hoàn của hàm số lượng giác (có đáp án)


Câu 20:

15/10/2024

Trong các hàm số sau, hàm số nào là hàm số chẵn?

Xem đáp án

Đáp án đúng là C

*Phương pháp giải

Sử dụng định nghĩa

Hàm số y = f(x) xác định trên D

    + Hàm số chẵn Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

    + Hàm số lẻ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Chú ý: Một hàm số có thể không chẵn cũng không lẻ

        Đồ thị hàm số chẵn nhận trục Oy làm trục đối xứng

        Đồ thị hàm số lẻ nhận gốc tọa độ O làm tâm đối xứng

* Quy trình xét hàm số chẵn, lẻ.

B1: Tìm tập xác định của hàm số.

B2: Kiểm tra

    Nếu ∀ x ∈ D ⇒ -x ∈ D Chuyển qua bước ba

    Nếu ∃ x0 ∈ D ⇒ -x0 ∉ D kết luận hàm không chẵn cũng không lẻ.

B3: xác định f(-x) và so sánh với f(x).

    Nếu bằng nhau thì kết luận hàm số là chẵn

    Nếu đối nhau thì kết luận hàm số là lẻ

    Nếu tồn tại một giá trị ∃ x0 ∈ D mà f(-x0 ) ≠ ± f(x0) kết luận hàm số không chẵn cũng không lẻ.

Các công thức lượng giác liên quan:

cos (a + b) = cosa cosb – sina sinb

sin (a – b) = sina cosb – cosa sinb

sin (a + b) = sina cosb + cosa sinb

sinacosb = [sin(a-b) + sin(a+b)].

*Lời giải

+ Xét phương án A: Tập xác định D = R

f(x) = -2sinx + sin 2x 

f(- x)  = - 2sin (-x) + sin (- 2x ) =  2sinx - sin2x 

suy ra: f(- x)= - f(x) nên đây là  hàm số lẻ

+ Xét phương án B:  Tập xác định D=  R.

g(x) =  2. sinx ;  g(- x) = 2. sin (- x) = - 2.sinx

suy ra,  g(- x) = - g(x)  nên đây là hàm số lẻ

+ Xét phương án C:  y = t(x) = cosx đây là hàm  số chẵn 

Chọn C 

Xem thêm các bài viết liên quan hay, chi tiết:

Phương pháp xét tính chẵn, lẻ của hàm số chi tiết nhất

Xét tính chẵn, lẻ, chu kì tuần hoàn của hàm số lượng giác và cách giải

 

 


Bắt đầu thi ngay

Bài thi liên quan


Có thể bạn quan tâm


Các bài thi hot trong chương