100 câu trắc nghiệm Phương trình lượng giác nâng cao
100 câu trắc nghiệm Phương trình lượng giác nâng cao (Đề số 1 )
-
1786 lượt thi
-
20 câu hỏi
-
20 phút
Danh sách câu hỏi
Câu 4:
21/07/2024Hàm số y = có tập xác định R khi
Đáp án D
Hàm số có tập xác định R khi m cosx + 1 > 0, ∀x (*) .
Khi m = 0 thì (*) luôn đúng nên nhận giá trị m = 0.
Khi m > 0 thì mcosx + 1 ∈ [-m + 1; m + 1] nên (*) đúng khi -m + 1 > 0 => 0 < m < 1.
Khi m < 0 thì mcosx + 1 ∈ [m + 1; -m + 1] nên (*) đúng khi m + 1 > 0 => -1 < m < 0
Vậy giá trị m thoả mãn là -1 < m < 1.
Câu 6:
23/07/2024Trong các hàm số sau, có bao nhiêu hàm số là hàm chẵn trên tập xác định của nó?
y = cot 2x; y = cos(x + π); y = 1 – sin x; y = tan2016x
Đáp án B
+ Xét hàm y = f(x) = cos (x + π)
TXĐ: D = R
Với mọi x ∈ D, ta có: -x ∈ D và f(-x) = cos (-x + π) = -cos x = cos (x + π) = f(x)
Do đó y = cos (x + π) là hàm số chẵn .
+ Xét hàm y = g(x) = tan2016x
TXĐ: D = R\{π/2 + kπ, k ∈ Z}
Với mọi x ∈ D, ta có: -x ∈ D và g(-x) = tan2016(-x) = (-tan x)2016 = tan2016x = g(x)
Do đó: y = tan2016x là hàm chẵn trên tập xác định của nó.
+Xét hàm y = cot2x
f(-x) = cot(-2x) = - cot 2x = -f(x) nên đây là hàm số lẻ.
+ Xét hàm số y = 1-sinx
f(-x) = 1- sin(-x) = 1+ sin x
Nên hàm số không chẵn không lẻ
Câu 7:
22/07/2024Xét tính chẵn lẻ của hàm số y = f(x) = cos(2x + ) + sin(2x - ), ta được
Đáp án D
Ta có tập xác định D = R.
Hàm số y = f(x) = 0 có:
f(-x) = 0 và –f(x) = 0
=> f(x) = f(-x) = -f(x) vừa thỏa mãn tính chất của hàm số chẵn, vừa thỏa mãn tính chất của hàm số lẻ, nên đây là hàm số vừa chẵn vừa lẻ.
Câu 8:
15/10/2024Trong các hàm số dưới đây có bao nhiêu hàm số là hàm số chẵn:
y = cos 3x (1); y = sin (x2 + 1) (2) ;
y = tan2 x (3); y = cot x (4);
Đáp án đúng là: C
*Phương pháp giải
Sử dụng định nghĩa
Hàm số y = f(x) xác định trên D
+ Hàm số chẵn
+ Hàm số lẻ
Chú ý: Một hàm số có thể không chẵn cũng không lẻ
Đồ thị hàm số chẵn nhận trục Oy làm trục đối xứng
Đồ thị hàm số lẻ nhận gốc tọa độ O làm tâm đối xứng
* Quy trình xét hàm số chẵn, lẻ.
B1: Tìm tập xác định của hàm số.
B2: Kiểm tra
Nếu ∀ x ∈ D ⇒ -x ∈ D Chuyển qua bước ba
Nếu ∃ x0 ∈ D ⇒ -x0 ∉ D kết luận hàm không chẵn cũng không lẻ.
B3: xác định f(-x) và so sánh với f(x).
Nếu bằng nhau thì kết luận hàm số là chẵn
Nếu đối nhau thì kết luận hàm số là lẻ
Nếu tồn tại một giá trị ∃ x0 ∈ D mà f(-x0 ) ≠ ± f(x0) kết luận hàm số không chẵn cũng không lẻ.
*Lời giải
+ Xét hàm y = f(x) = cos 3x
TXĐ: D = R
Với mọi x ∈ D, ta có: -x ∈ Dvà f(-x) = cos (-3x) = cos 3x = f(x)
Do đó, y = f(x) = cos 3x là hàm chẵn trên tập xác định của nó.
+ Xét hàm y = g(x) = sin (x2 + 1)
TXĐ: D = R
Với mọi x ∈ D, ta có: -x ∈ D và g(-x) = sin ((-x)2 + 1) = sin (x2 + 1) = g(x)
Do đó: y = g(x) = sin (x2 + 1) là hàm chẵn trên R.
+ Xét hàm y = h(x) = tan2 x
TXĐ: D = R \ {π / 2 + kπ, k ∈ Z)
Với mọi x ∈ D, ta có: -x ∈ D và h(-x) = tan2 (-x) = tan2 x = h(x)
Do đó: y = h(x) = tan2 x là hàm số chẵn trên D
+ Xét hàm y = t(x) = cot x.
TXĐ: D = R \ {kπ, k ∈ Z)
Với mọi x ∈ D, ta có: -x ∈ D và t(-x) = cot (-x) = -cot x = -t(x)
Do đó: y = t(x) = cot x là hàm số lẻ trên D.
Xem thêm các bài viết liên quan hay, chi tiết:
Phương pháp xét tính chẵn, lẻ của hàm số chi tiết nhất
Xét tính chẵn, lẻ, chu kì tuần hoàn của hàm số lượng giác và cách giải
Câu 9:
23/07/2024Cho hai hàm số f(x) = và g(x) = . Kết luận nào sau đây đúng về tính chẵn lẻ của hai hàm số này?
Đáp án D
a, Xét hàm số có tập xác định là D = R\{3}.
Ta có x = -3 ∈ D nhưng -x = 3 ∉ D nên D không có tính đối xứng. Do đó ta có kết luận hàm số f(x) không chẵn không lẻ.
b, Xét hàm số có tập xác định là D2 = [1; + ∞). Dễ thấy D2 không phải là tập đối xứng nên ta kết luận hàm số g(x) không chẵn không lẻ.
Câu 10:
18/07/2024Xét sự biến thiên của hàm số y = 1 - sinx trên một chu kì tuần hoàn của nó. Trong các kết luận sau, kết luận nào sai?
Đáp án D
Hàm số đã cho tuần hoàn với chu kỳ 2 và kết hợp với các phương án đề bài thì ta sẽ xét sự biến thiên của hàm số trên (-π/2; 3π/2)
Ta có hàm số y = sin x
* Đồng biến trên khoảng (-π/2; π/2)
* Nghịch biến trên khoảng (π/2; 3π/2)
Từ đây suy ra hàm số y = 1 - sinx
* Nghịch biến trên khoảng (-π/2; π/2)
* Đồng biến trên khoảng (π/2; 3π/2)
Câu 11:
20/07/2024Xét sự biến thiên của hàm số y = sinx - cosx. Trong các kết luận sau, kết luận nào đúng?
Đáp án A
Ta có
Từ đây ta có thể loại đáp án C, do tập giá trị của hàm số là
Hàm số đã cho tuần hoàn với chu kỳ 2π do vậy ta xét sự biến thiên của hàm số trên đoạn (-π/4; 7π/4)
Ta có:
* Hàm số đồng biến trên khoảng (-π/4; 3π/4)
* Hàm số nghịch biến trên khoảng (3π/4; 7π/4)
Câu 12:
23/07/2024Xét tính tuần hoàn và tìm chu kì (nếu có) của hàm số sau: y = cosx + cos(x)
Đáp án A
Câu 14:
16/07/2024Xét sự biến thiên của hàm số y = sinx - cosx. Tìm kết luận nào đúng?
Đáp án A
Câu 15:
23/07/2024Xét hai mệnh đề sau:
(I) : Hàm số y = giảm
(II) : Hàm số y = giảm
Mệnh đề đúng trong hai mệnh đề trên là:
Đáp án B
Câu 16:
20/07/2024Cho hàm số y = 4sin(x + ) cos(x - ) - sin2x. Kết luận nào sau đây là đúng về sự biến thiên của hàm số đã cho?
Đáp án A
Ta có y = 4sin (x + π/6) cos (x - π/6) - sin 2x
= 2 (sin 2x + sin π/3) - sin 2x = sin 2x +
Xét sự biến thiên của hám số y = sin 2x +,
Ta thấy với A. Trên (0; π/4) thì giá trị của hàm số luôn tăng.
Tương tự trên (3π/4; π) thì giá trị của hàm số cũng luôn tăng.
Câu 19:
10/10/2024Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?
Đáp án đúng là: A
*Phương pháp giải:
Hàm số f(x) được gọi là hàm số chẵn nếu thì và
Hàm số f(x) được gọi là hàm số lẻ nếu thì và
* Lưu ý:
- Đồ thị của một hàm số chẵn nhận trục tung (Oy) làm trục đối xứng.
- Đồ thị của một hàm số lẻ nhận gốc tọa độ làm tâm đối xứng.
*Lời giải
+ Xét phương án B:
Do đó, hàm số này không là hàm chẵn, không là hàm lẻ.
+ Xét phương án C:
y= t(x) = sinx + cosx
suy ra: t(- x )= sin (- x) + cos (- x) = - sinx + cosx
do đó hàm số này không chẵn, không lẻ
+ Phương án A: TXĐ:
Ta có:
Nên hàm số này là hàm số lẻ; nhận gốc tọa độ làm tâm đối xứng.
* Một số lý thuyết và dạng bài thêm về lượng giác và đồ thị:
a, Hàm số y = sinx
- Tập xác định là .
- Tập giá trị là [-1;1].
- Là hàm số lẻ và tuần hoàn chu kì 2.
- Đồng biến trên mỗi khoảng và nghịch biến trên mỗi khoảng .
- Có đồ thị đối xứng qua gốc tọa độ và gọi là một đường hình sin.
b, Hàm số y = cosx
- Tập xác định là .
- Tập giá trị là [-1;1].
- Là hàm số chẵn và tuần hoàn chu kì 2.
- Đồng biến trên mỗi khoảng và nghịch biến trên mỗi khoảng .
- Có đồ thị là một đường hình sin đối xứng qua trục tung.
c, Hàm số y = tanx
- Tập xác định là .
- Tập giá trị là .
- Là hàm số lẻ và tuần hoàn chu kì .
- Đồng biến trên mỗi khoảng , .
- Có đồ thị đối xứng qua gốc tọa độ.
d, Hàm số y = cotx
- Tập xác định là .
- Tập giá trị là .
- Là hàm số lẻ và tuần hoàn chu kì .
- Đồng biến trên mỗi khoảng , .
- Có đồ thị đối xứng qua gốc tọa độ.
Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:
50 Bài tập Hàm số lượng giác Toán 11 mới
Bài tập trắc nghiệm Lượng giác lớp 11 có lời giải
Xét tính chẵn, lẻ, chu kì tuần hoàn của hàm số lượng giác (có đáp án)
Câu 20:
15/10/2024Trong các hàm số sau, hàm số nào là hàm số chẵn?
Đáp án đúng là C
*Phương pháp giải
Sử dụng định nghĩa
Hàm số y = f(x) xác định trên D
+ Hàm số chẵn
+ Hàm số lẻ
Chú ý: Một hàm số có thể không chẵn cũng không lẻ
Đồ thị hàm số chẵn nhận trục Oy làm trục đối xứng
Đồ thị hàm số lẻ nhận gốc tọa độ O làm tâm đối xứng
* Quy trình xét hàm số chẵn, lẻ.
B1: Tìm tập xác định của hàm số.
B2: Kiểm tra
Nếu ∀ x ∈ D ⇒ -x ∈ D Chuyển qua bước ba
Nếu ∃ x0 ∈ D ⇒ -x0 ∉ D kết luận hàm không chẵn cũng không lẻ.
B3: xác định f(-x) và so sánh với f(x).
Nếu bằng nhau thì kết luận hàm số là chẵn
Nếu đối nhau thì kết luận hàm số là lẻ
Nếu tồn tại một giá trị ∃ x0 ∈ D mà f(-x0 ) ≠ ± f(x0) kết luận hàm số không chẵn cũng không lẻ.
Các công thức lượng giác liên quan:
cos (a + b) = cosa cosb – sina sinb
sin (a – b) = sina cosb – cosa sinb
sin (a + b) = sina cosb + cosa sinb
sinacosb = [sin(a-b) + sin(a+b)].
*Lời giải
+ Xét phương án A: Tập xác định D = R
f(x) = -2sinx + sin 2x
f(- x) = - 2sin (-x) + sin (- 2x ) = 2sinx - sin2x
suy ra: f(- x)= - f(x) nên đây là hàm số lẻ
+ Xét phương án B: Tập xác định D= R.
suy ra, g(- x) = - g(x) nên đây là hàm số lẻ
+ Xét phương án C: y = t(x) = cosx đây là hàm số chẵn
Chọn C
Xem thêm các bài viết liên quan hay, chi tiết:
Phương pháp xét tính chẵn, lẻ của hàm số chi tiết nhất
Xét tính chẵn, lẻ, chu kì tuần hoàn của hàm số lượng giác và cách giải
Bài thi liên quan
-
100 câu trắc nghiệm Phương trình lượng giác nâng cao (Đề số 2)
-
20 câu hỏi
-
20 phút
-
-
100 câu trắc nghiệm Phương trình lượng giác nâng cao (Đề số 3)
-
20 câu hỏi
-
20 phút
-
-
100 câu trắc nghiệm Phương trình lượng giác nâng cao (Đề số 4)
-
20 câu hỏi
-
20 phút
-
-
100 câu trắc nghiệm Phương trình lượng giác nâng cao (Đề số 5)
-
20 câu hỏi
-
20 phút
-
Có thể bạn quan tâm
- Trắc nghiệm Ôn tập chương 1 (có đáp án) (690 lượt thi)
- 100 câu trắc nghiệm Hàm số lượng giác cơ bản (1277 lượt thi)
- 100 câu trắc nghiệm Phương trình lượng giác nâng cao (1785 lượt thi)
- Trắc nghiệm Chương 1: Hàm số lượng giác và phương trình lượng giác có đáp án (547 lượt thi)
Các bài thi hot trong chương
- Trắc nghiệm Hàm số lượng giác (có đáp án) (1379 lượt thi)
- Trắc nghiệm Phương trình lượng giác cơ bản (có đáp án) (784 lượt thi)
- Trắc nghiệm Một số phương trình lượng giác thường gặp (có đáp án) (629 lượt thi)
- Một số phương trình lượng giác thường gặp có đáp án (Vận dụng) (558 lượt thi)
- Trắc nghiệm Phương trình lượng giác cơ bản có đáp án (Thông hiểu) (551 lượt thi)
- Trắc nghiệm Hàm số lượng giác có đáp án (Nhận biết) (487 lượt thi)
- Trắc nghiệm Hàm số lượng giác có đáp án (Thông hiểu) (404 lượt thi)
- Trắc nghiệm Hàm số lượng giác có đáp án (368 lượt thi)
- Trắc nghiệm Hàm số lượng giác có đáp án (Vận dụng) (363 lượt thi)
- Trắc nghiệm Phương trình lượng giác cơ bản có đáp án (353 lượt thi)