Câu hỏi:
15/10/2024 1,801Trong các hàm số dưới đây có bao nhiêu hàm số là hàm số chẵn:
y = cos 3x (1); y = sin (x2 + 1) (2) ;
y = tan2 x (3); y = cot x (4);
A. 1 .
B. 2
C. 3 .
D. 4
Trả lời:
Đáp án đúng là: C
*Phương pháp giải
Sử dụng định nghĩa
Hàm số y = f(x) xác định trên D
+ Hàm số chẵn
+ Hàm số lẻ
Chú ý: Một hàm số có thể không chẵn cũng không lẻ
Đồ thị hàm số chẵn nhận trục Oy làm trục đối xứng
Đồ thị hàm số lẻ nhận gốc tọa độ O làm tâm đối xứng
* Quy trình xét hàm số chẵn, lẻ.
B1: Tìm tập xác định của hàm số.
B2: Kiểm tra
Nếu ∀ x ∈ D ⇒ -x ∈ D Chuyển qua bước ba
Nếu ∃ x0 ∈ D ⇒ -x0 ∉ D kết luận hàm không chẵn cũng không lẻ.
B3: xác định f(-x) và so sánh với f(x).
Nếu bằng nhau thì kết luận hàm số là chẵn
Nếu đối nhau thì kết luận hàm số là lẻ
Nếu tồn tại một giá trị ∃ x0 ∈ D mà f(-x0 ) ≠ ± f(x0) kết luận hàm số không chẵn cũng không lẻ.
*Lời giải
+ Xét hàm y = f(x) = cos 3x
TXĐ: D = R
Với mọi x ∈ D, ta có: -x ∈ Dvà f(-x) = cos (-3x) = cos 3x = f(x)
Do đó, y = f(x) = cos 3x là hàm chẵn trên tập xác định của nó.
+ Xét hàm y = g(x) = sin (x2 + 1)
TXĐ: D = R
Với mọi x ∈ D, ta có: -x ∈ D và g(-x) = sin ((-x)2 + 1) = sin (x2 + 1) = g(x)
Do đó: y = g(x) = sin (x2 + 1) là hàm chẵn trên R.
+ Xét hàm y = h(x) = tan2 x
TXĐ: D = R \ {π / 2 + kπ, k ∈ Z)
Với mọi x ∈ D, ta có: -x ∈ D và h(-x) = tan2 (-x) = tan2 x = h(x)
Do đó: y = h(x) = tan2 x là hàm số chẵn trên D
+ Xét hàm y = t(x) = cot x.
TXĐ: D = R \ {kπ, k ∈ Z)
Với mọi x ∈ D, ta có: -x ∈ D và t(-x) = cot (-x) = -cot x = -t(x)
Do đó: y = t(x) = cot x là hàm số lẻ trên D.
Xem thêm các bài viết liên quan hay, chi tiết:
Phương pháp xét tính chẵn, lẻ của hàm số chi tiết nhất
Xét tính chẵn, lẻ, chu kì tuần hoàn của hàm số lượng giác và cách giải
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?
Câu 4:
Xét tính chẵn lẻ của hàm số y = f(x) = cos(2x + ) + sin(2x - ), ta được
Câu 5:
Xét tính tuần hoàn và tìm chu kì (nếu có) của hàm số sau: y = cosx + cos(x)
Câu 6:
Xét sự biến thiên của hàm số y = sinx - cosx. Trong các kết luận sau, kết luận nào đúng?
Câu 7:
Cho hai hàm số f(x) = và g(x) = . Kết luận nào sau đây đúng về tính chẵn lẻ của hai hàm số này?
Câu 10:
Xét hai mệnh đề sau:
(I) : Hàm số y = giảm
(II) : Hàm số y = giảm
Mệnh đề đúng trong hai mệnh đề trên là:
Câu 14:
Xét sự biến thiên của hàm số y = 1 - sinx trên một chu kì tuần hoàn của nó. Trong các kết luận sau, kết luận nào sai?
Câu 15:
Trong các hàm số sau, có bao nhiêu hàm số là hàm chẵn trên tập xác định của nó?
y = cot 2x; y = cos(x + π); y = 1 – sin x; y = tan2016x