Giải Toán 11 trang 26 Tập 1 Kết nối tri thức

Với giải bài tập Toán 11 trang 26 Tập 1 trong Bài 3: Hàm số lượng giác sách Kết nối tri thức Tập 1 hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 trang 26 Tập 1.

1 214 22/03/2023


Giải Toán 11 trang 26 Tập 1

Luyện tập 4 trang 26 Toán 11 Tập 1Tìm tập giá trị của hàm số y = 2sin x.

Lời giải:

Ta có: – 1 ≤ sin x ≤ 1 với mọi x ∈ ℝ.

Suy ra 2 . (– 1) ≤ 2sin x ≤ 2 . 1 hay – 2 ≤ 2sin x ≤ 2 với mọi x ∈ ℝ.

Vậy hàm số y = 2sin x có tập giá trị là [– 2; 2].

Vận dụng 1 trang 26 Toán 11 Tập 1: Xét tình huống mở đầu.

a) Giải bài toán ở tình huống mở đầu.

b) Biết rằng quá trình hít vào xảy ra khi v > 0 và quá trình thở ra xảy ra khi v < 0.

Trong khoảng thời gian từ 0 đến 5 giây, khoảng thời điểm nào thì người đó hít vào? người đó thở ra?

Lời giải:

a) Thời gian của một chu kì hô hấp đầy đủ chính là một chu kì tuần hoàn của hàm v(t) và là T = 2ππ3=6  (giây).

Ta có: 1 phút = 60 giây.

Do đó, số chu kì hô hấp trong một phút của người đó là 606=10 (chu kì).

b) Ta có: v=0,85sinπt3

+) v > 0 khi 0,85sinπt3>0sinπt3>0

Mà – 1 ≤ sin πt3 ≤ 1 với mọi x ∈ ℝ. Do đó, 0<sinπt31 .

+) v < 0 khi 0,85sinπt3<0sinπt3<0

Mà – 1 ≤ sin πt3  ≤ 1 với mọi x ∈ ℝ. Do đó, 1sinπt3<0.

+) Với t ∈ (0; 3) ta có 0<sinπt31 .

+) Với t ∈ (3; 5] ta có 1sinπt3<0 .

Vậy trong khoảng thời gian từ 0 đến 5 giây, khoảng thời điểm sau 0 giây đến trước 3 giây thì người đó hít vào và khoảng thời điểm sau 3 giây đến 5 giây thì người đó thở ra.

HĐ5 trang 26 Toán 11 Tập 1: Cho hàm số y = cos x.

a) Xét tính chẵn, lẻ của hàm số.

b) Hoàn thành bảng giá trị sau của hàm số y = cos x trên đoạn [– π; π] bằng cách tính giá trị của cos x với những x không âm, sau đó sử dụng kết quả câu a để suy ra giá trị tương ứng của cos x với những x âm.

HĐ5 trang 26 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Bằng cách lấy nhiều điểm M(x; cos x) với x ∈ [– π; π] và nối lại ta được đồ thị hàm số y = cos x trên đoạn [– π; π].

c) Bằng cách làm tương tự câu b cho các đoạn khác có độ dài bằng chu kì T = 2π, ta được đồ thị của hàm số y = cos x như hình dưới đây.

HĐ5 trang 26 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Từ đồ thị ở Hình 1.15, hãy cho biết tập giá trị, các khoảng đồng biến, các khoảng nghịch biến của hàm số y = cos x.

Lời giải:

a) Hàm số y = f(x) = cos x có tập xác định là D = ℝ.

Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.

Ta có: f(– x) = cos (– x) = cos x = f(x), ∀ x ∈ D.

Vậy y = cos x là hàm số chẵn.

b) Ta có: cos 0 = 1, cosπ4=22,cosπ2=0,cos3π4=22 , cos π = – 1.

Vì y = cos x là hàm số chẵn nên cosπ4=cosπ4=22cosπ2=cosπ2=0 ,

cos3π4=cos3π4=22, cos(– π) = cos π = – 1.

Vậy ta hoàn thành được bảng như sau:

HĐ5 trang 26 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

c) Quan sát Hình 1.15, ta thấy đồ thị hàm số y = cos x có:

+) Tập giá trị là [– 1; 1];

+) Đồng biến trên mỗi khoảng π+k2π;k2π  (do đồ thị hàm số đi lên từ trái sang phải trên mỗi khoảng này) và nghịch biến trên mỗi khoảng k2π;π+k2π,k  (do đồ thị hàm số đi xuống từ trái sang phải trên mỗi khoảng này). 

Xem thêm lời giải bài tập Toán 11 sách Kết nối tri thức hay, chi tiết khác:

Giải Toán 11 trang 22 Tập 1

Giải Toán 11 trang 23 Tập 1

Giải Toán 11 trang 24 Tập 1

Giải Toán 11 trang 25 Tập 1

Giải Toán 11 trang 26 Tập 1

Giải Toán 11 trang 27 Tập 1

Giải Toán 11 trang 28 Tập 1

Giải Toán 11 trang 29 Tập 1

Giải Toán 11 trang 30 Tập 1

1 214 22/03/2023


Xem thêm các chương trình khác: