Giải Toán 11 trang 24 Tập 1 Kết nối tri thức

Với giải bài tập Toán 11 trang 24 Tập 1 trong Bài 3: Hàm số lượng giác sách Kết nối tri thức Tập 1 hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 trang 24 Tập 1.

1 301 22/03/2023


Giải Toán 11 trang 24 Tập 1

Luyện tập 2 trang 24 Toán 11 Tập 1Xét tính chẵn, lẻ của hàm số gx=1x.

Lời giải:

Biểu thức 1x  có nghĩa khi x ≠ 0.

Suy ra tập xác định của hàm số gx=1x là D = ℝ \ {0}.

Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.

Ta có: g(– x) = 1x=1x = – g(x), ∀ x ∈ D.

Vậy gx=1x là hàm số lẻ.

HĐ3 trang 24 Toán 11 Tập 1So sánh:

a) sin(x + 2π) và sin x;

b) cos(x + 2π) và cos x;

c) tan(x + π) và tan x;

d) cot(x + π) và cot x.

Lời giải:

a) Ta có: sin(x + 2π) = sin[π + (x + π)] = – sin(x + π) = – sin(π + x) = – (– sin x) = sin x.

Vậy sin(x + 2π) = sin x.

b) Ta có: cos(x + 2π) = cos[π + (x + π)] = – cos(x + π) = – (– cos x) = cos x.

Vậy cos(x + 2π) = cos x.

c) Ta có: tan(x + π) = tan(π + x) = tan x.

Vậy tan(x + π) = tan x.

d) Ta có: cot(x + π) = cot(π + x) = cot x.

Vậy cot(x + π) = cot x.

Câu hỏi trang 24 Toán 11 Tập 1: Hàm số hằng f(x) = c (c là hằng số) có phải hàm số tuần hoàn không? Nếu hàm số tuần hoàn thì nó có chu kì không?

Lời giải:

Hàm số hằng f(x) = c (c là hằng số) có tập xác định D = ℝ.

Với T là số dương bất kì và với mọi x ∈ D, ta luôn có:

+) x + T ∈ D và x – T ∈ D;

+) f(x + T) = c = f(x) (vì f(x) là hàm số hằng nên với mọi x thì giá trị của hàm số đều có giá trị bằng c).

Vậy hàm số hằng f(x) = c (c là hằng số) là hàm số tuần hoàn với chu kì là một số dương bất kì.

Xem thêm lời giải bài tập Toán 11 sách Kết nối tri thức hay, chi tiết khác:

Giải Toán 11 trang 22 Tập 1

Giải Toán 11 trang 23 Tập 1

Giải Toán 11 trang 24 Tập 1

Giải Toán 11 trang 25 Tập 1

Giải Toán 11 trang 26 Tập 1

Giải Toán 11 trang 27 Tập 1

Giải Toán 11 trang 28 Tập 1

Giải Toán 11 trang 29 Tập 1

Giải Toán 11 trang 30 Tập 1

1 301 22/03/2023


Xem thêm các chương trình khác: