Giải Toán 11 trang 124 Kết nối tri thức
Với giải bài tập Toán 11 trang 124 trong Bài tập cuối chương 5 sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 trang 124.
Giải Toán 11 trang 124
Lời giải:
Vì
Do đó, . Từ đó suy ra .
Bài 5.26 trang 124 Toán 11 Tập 1: Tìm giới hạn của các dãy số sau:
Lời giải:
a)
Ta có:
Vì là tổng n số hạng đầu của cấp số nhân với số hạng đầu là và công bội là nên
.
Tương tự, ta tính được:
.
Do đó,
Vậy
c)
Ta có:
Do đó, .
Bài 5.27 trang 124 Toán 11 Tập 1: Viết các số thập phân vô hạn tuần hoàn sau đây dưới dạng phân số.
Lời giải:
a) Ta có: 1,(01) = 1,010101... = 1 + 0,01 + 0,0001 + 0,000001 + ...
= 100 + 10-2 + 10-4 + 10-6 + ...
Đây là tổng của cấp số nhân lùi vô hạn với u1 = 100 = 1 và q = 10-2 nên
1,(01) = .
b) Ta có: 5,(132) = 5,132132132... = 5 + 0,132 + 0,000132 + 0,000000132 + ...
= 5 + 0,132 + 0,132 . 10-3 + 0,132 . 10-6 + ...
Vì 0,132 + 0,132 . 10-3 + 0,132 . 10-6 + ... là tổng của cấp số nhân lùi vô hạn với u1 = 0,132 và q = 10-3 nên
0,132 + 0,132 . 10-3 + 0,132 . 10-6 + ... = .
Do đó 5,(132) = 5 + = .
Bài 5.28 trang 124 Toán 11 Tập 1: Tính các giới hạn sau:
Lời giải:
a)
.
b) .
c)
Ta có: ;
và (1 – x)2 > 0 với mọi x ≠ 1.
Do vậy, .
d)
.
Bài 5.29 trang 124 Toán 11 Tập 1: Tính các giới hạn một bên:
Lời giải:
a)
Với mọi x > 3, ta có x – 3 > 0 nên |x – 3| = x – 3.
Do đó,
b)
Ta có: ;
Và với mọi x < 1, ta có 1 – x > 0, suy ra .
Vậy .
Bài 5.30 trang 124 Toán 11 Tập 1: Chứng minh rằng giới hạn không tồn tại.
Lời giải:
+) Với x > 0, ta có: |x| = x.
Khi đó, (1)
+) Với x < 0, ta có: |x| = – x.
Khi đó, (2)
Từ (1) và (2) suy ra nên không tồn tại giới hạn
Bài 5.31 trang 124 Toán 11 Tập 1: Giải thích tại sao các hàm số sau đây gián đoạn tại điểm đã cho.
Lời giải:
a) Với x ≠ 0, thì , ta có: và .
Suy ra nên không tồn tại .
Vậy hàm số đã cho gián đoạn tại x = 0.
b) Ta có: ;
.
Suy ra nên không tồn tại .
Vậy hàm số đã cho gian đoạn tại x = 1.
Lời giải:
Vì M và R lần lượt là khối lượng và bán kính của Trái Đất, G là hằng số hấp dẫn, do đó M, R, G đều khác 0, r là khoảng cách nên r > 0.
Ta có: Tập xác định của hàm số F(r) là (0; +∞).
+) Với r < R thì F(r) = hay F(r) = là hàm đa thức nên nó liên tục trên (0; R).
+) Với r > R thì F(r) = là hàm phân thức nên nó liên tục trên (R; +∞).
+) Tại r = R, ta có F(R) = .
; .
Do đó, nên .
Suy ra hàm số F(r) liên tục tại r = R.
Vậy hàm số F(r) liên tục trên (0; +∞).
Lời giải:
a) Biểu thức có nghĩa khi x2 + 5x + 6 ≠ 0 ⇔ (x + 2)(x + 3) ≠ 0
Do đó, tập xác định của hàm số f(x) là ℝ \ {– 3; – 2} = (–∞; – 3) ∪ (– 3; – 2) ∪ (– 2; +∞).
Suy ra hàm số f(x) xác định trên các khoảng (–∞; – 3), (– 3; – 2) và (– 2; +∞). Trên các khoảng này, tử thức (hàm lượng giác) và mẫu thức (hàm đa thức) là các hàm số liên tục. Vậy hàm số liên tục trên các khoảng xác định của chúng.
b) Biểu thức có nghĩa khi sin x ≠ 0 ⇔ x ≠ kπ, k ∈ ℤ.
Do đó, tập xác định của hàm số g(x) là ℝ \ {kπ | k ∈ ℤ}.
Trên các khoảng xác định của hàm số g(x), tử thức x – 2 (hàm đa thức) và mẫu thức sin x (hàm lượng giác) là các hàm số liên tục.
Vậy hàm số liên tục trên các khoảng xác định của chúng.
Bài 5.34 trang 124 Toán 11 Tập 1: Tìm các giá trị của a để hàm số liên tục trên ℝ.
Lời giải:
Ta có: Tập xác định của hàm số f(x) là ℝ.
+) Với x < a thì f(x) = x + 1 là hàm đa thức nên nó liên tục trên (–∞; a).
+) Với x > a thì f(x) = x2 là hàm đa thức nên nó liên tục trên (a; +∞).
+) Tại x = a, ta có f(a) = a + 1.
; .
Để hàm số f(x) đã cho liên tục trên ℝ thì f(x) phải liên tục tại x = a, điều này xảy ra khi và chỉ khi ⇔ a + 1 = a2 ⇔ a2 – a – 1 = 0
Suy ra hoặc .
Vậy thì thỏa mãn yêu cầu bài toán.
Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:
Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:
Bài 5.18 trang 123 Toán 11 Tập 1: Cho dãy số (un) với . Mệnh đề đúng là
A. ...
Bài 5.19 trang 123 Toán 11 Tập 1: Cho . Giới hạn của dãy số (un) bằng...
Bài 5.21 trang 123 Toán 11 Tập 1: Cho hàm số . Mệnh đề đúng là
A. ...
Bài 5.22 trang 123 Toán 11 Tập 1: Cho hàm số. Khi đó bằng...
Bài 5.23 trang 123 Toán 11 Tập 1: Cho hàm số . Hàm số f(x) liên tục trên...
Bài 5.24 trang 123 Toán 11 Tập 1: Cho hàm số Hàm số liên tục tại x = 1 ...
Bài 5.26 trang 124 Toán 11 Tập 1: Tìm giới hạn của các dãy số sau: a) ;...
Bài 5.28 trang 124 Toán 11 Tập 1: Tính các giới hạn sau: a) ;...
Bài 5.29 trang 124 Toán 11 Tập 1: Tính các giới hạn một bên: a) ...
Bài 5.30 trang 124 Toán 11 Tập 1: Chứng minh rằng giới hạn không tồn tại...
Bài 5.31 trang 124 Toán 11 Tập 1: Giải thích tại sao các hàm số sau đây gián đoạn tại điểm đã cho...
Bài 5.34 trang 124 Toán 11 Tập 1: Tìm các giá trị của a để hàm số liên tục trên ℝ...
Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Kết nối tri thức - hay nhất
- Văn mẫu lớp 11 - Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn 11 – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn 11 - Kết nối tri thức
- Giải SBT Ngữ văn 11 – Kết nối tri thức
- Bố cục tác phẩm Ngữ văn 11 – Kết nối tri thức
- Giải Chuyên đề học tập Ngữ văn 11 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Kết nối tri thức
- Soạn văn 11 Kết nối tri thức (ngắn nhất)
- Bài tập Tiếng Anh 11 Global success theo Unit có đáp án
- Giải sgk Tiếng Anh 11 – Global success
- Giải sbt Tiếng Anh 11 - Global Success
- Trọn bộ Từ vựng Tiếng Anh 11 Global success đầy đủ nhất
- Ngữ pháp Tiếng Anh 11 Global success
- Giải sgk Vật lí 11 – Kết nối tri thức
- Lý thuyết Vật lí 11 – Kết nối tri thức
- Giải sbt Vật lí 11 – Kết nối tri thức
- Giải Chuyên đề học tập Vật lí 11 – Kết nối tri thức
- Chuyên đề dạy thêm Vật lí 11 cả 3 sách (2024 có đáp án)
- Giải sgk Hóa học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Hóa học 11 – Kết nối tri thức
- Lý thuyết Hóa 11 - Kết nối tri thức
- Giải sbt Hóa học 11 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 11 cả 3 sách (2024 có đáp án)
- Giải sgk Sinh học 11 – Kết nối tri thức
- Lý thuyết Sinh học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Sinh học 11 – Kết nối tri thức
- Giải sbt Sinh học 11 – Kết nối tri thức
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Kết nối tri thức
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Kết nối tri thức
- Lý thuyết Kinh tế pháp luật 11 – Kết nối tri thức
- Giải sbt Kinh tế pháp luật 11 – Kết nối tri thức
- Giải sgk Lịch sử 11 – Kết nối tri thức
- Giải Chuyên đề học tập Lịch sử 11 – Kết nối tri thức
- Lý thuyết Lịch sử 11 - Kết nối tri thức
- Giải sbt Lịch sử 11 – Kết nối tri thức
- Giải sgk Địa lí 11 – Kết nối tri thức
- Giải Chuyên đề học tập Địa lí 11 – Kết nối tri thức
- Lý thuyết Địa lí 11 - Kết nối tri thức
- Giải sbt Địa lí 11 – Kết nối tri thức
- Giải sgk Công nghệ 11 – Kết nối tri thức
- Lý thuyết Công nghệ 11 - Kết nối tri thức
- Giải sbt Công nghệ 11 – Kết nối tri thức
- Giải sgk Tin học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Tin học 11 – Kết nối tri thức
- Lý thuyết Tin học 11 - Kết nối tri thức
- Giải sbt Tin học 11 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng an ninh 11 – Kết nối tri thức
- Lý thuyết Giáo dục quốc phòng 11 – Kết nối tri thức
- Giải sbt Giáo dục quốc phòng 11 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 11 – Kết nối tri thức